Evaluation of Future
JEE Technologies

Project Report

Nicolas Lanquetin
0604918@abertay.ac.uk

(]NTVIT,IRSITY
ABERTAY DUNDEE
University of Abertay Dundee

School of Computing & Creative Technologies
May 2007

University of Abertay Dundee

Permission to copy

Author: Nicolas Lanquetin
Title: Evaluation of Future JEE Technologies - Project Report

Degree: BSc (Hons) Web Design & Development
Year: 4

i) I certify that the above mentioned project is my original work.

ii) I agree that this dissertation may be reproduced, stored or transmitted, in any form
and by any means without the written consent of the undersigned.

Signature: ...

Date: e

Contents

1. Introduction 1
2. Project Prerequisites 2
2.1. Eclipse e 2
2.2, Jb0SS . .. 2
221. Securing JBoss 3

2.2.2. Apache and JBoss on the Same Server 3

2.3. Environment Variables 4
24. Maven 2 e e 5
2.5, Struts 2.0 . . . L. e e e 5

3. Demonstration Project 6
3.1. The Project Structure 6
311, Java classeso 6

3.1.2. File Descriptors and Resource Bundles 7

3.1.3. The Front-End Files 8

3.2. The Welcome Action i it ee e 8
3.3. The ValidationDemo Action 9
3.4. The AnnotationValidationDemo Action 11
35. Summary 12

4. Load-Testing 13
4.1. Setting Up the Test Environment 13
4.2. The Tested Web Application 15
43. The Load-Tester e e e e 15
44. BuildingaTestPlan. 15
45. The Load-Tests e 17

5. Conclusion 18

ii

Contents

6. Resources

A. Project Files
Al. Java Files
A2, JSP Files e
A3. Validation Files

B. The JMeter Test Plan

C. Honours Project Class Documentation
C.1. Honours Project Class Hierarchy
C.2. Honours Project Class List
C.3. com.psbase.hp.action.AnnotationValidationDemo Class Reference
C.3.1. Detailed Description
C.4. com.psbase.hp.Constants Class Reference
C.4.1. Detailed Description
C.4.2. Member Data Documentation
C.5. com.psbase.hp.model. ModelObject Interface Reference
C.5.1. Detailed Description
C.6. com.psbase.hp.exception.ResultNotSetException Class Reference
C.6.1. Detailed Description
C.7. com.psbase.hp.action.SupportBase Class Reference
C.7.1. Detailed Description
C.8. com.psbase.hp.model. TestObject Class Reference.
C.8.1. Detailed Description
C.9. com.psbase.hp.action.ValidationDemo Class Reference
C.9.1. Detailed Description
C.10.com.psbase.hp.action.Welcome Class Reference
C.10.1. Detailed Description

Index of Honours Project Classes
Glossary

Bibliography

19

20
20
23
27

29

33
33
33
34
34
35
35
35
37
37
38
38
39
39
40
40
41
41
42
42

43

44

46

iii

List of Figures

2.1
2.2.

3.1
3.2.
3.3.
34.
3.5.
3.6.

4.1.
4.2.
4.3.
44.

B.1.
B.2.
B.3.
B4.
B.5.
B.6.
B.7.
B.8.

Apache and JBoss, Solution1 oo o L. 3
Apache and JBoss, Solution2 oo oL 4

UML class diagram of the action package

Welcome Action L 8
Welcome Action L L 9
ValidationDemo Action 10
ValidationDemo Action 11
AnnotationValidationDemo Action 11
Summary report. 13
CPU History of javaw.exe process owned by JBoss. 15
CPU History of javaw.exe process owned by JMeter. 15
Screenshot of the JMeter application 16
Screenshot of the Welcome screen 29
Screenshot of Loginscreen. L .. 29
Screenshot of the mainmenu 29
Screenshot of the registration screen, showing the subscriptions 30
Screenshot of the screen to add a new subscription 30
Screenshot of registration screen with a new subscription 31
Screenshot of the screen to delete a subscription 31
Screenshot of a submitted form where validation failed. 32

iv

List of Tables

4.1. Configuration of testsystems L.
42. Configurationof JBoss L oo

Listings

2.1. Configuration of a proxy and reverse proxy in Apache’s httpd.conf 4
2.2. Output environment variables on console (Windows) 5
2.3. Output environment variables on console (GNU/Linux) 5
3.1. Extractof hp.xml e 7
32. Extractofweb.xml. 8
3.3. Extract of ValidationDemoShort.jsSp . . . « v v v v v v vt i 9
3.4. Extract of AnnotationValidationDemo.java 12
Al. Welcomejava 20
A.2. ValidationDemojava 20
A3. TestObjectjava 21
A.4. AnnotationValidationDemogjava 22
A5, Welcomejsp e 23
A.6. ValidationDemojsp L 24
A.7. ValidationDemoSuccessjsp 25
A.8. AnnotationValidationDemojsp 25
A.9. AnnotationValidationDemoSuccess.jsp 26
A.10.ValidationDemo-validation.xml 27

vi

Chapter 1.
Introduction

In theory, Maven 2 and Struts 2.0 are both great tools to develop enterprise web applica-
tions. The practical part of the research is to use these tools to develop a small application
and evaluate some of the features Struts 2.0 is offering. This report will therefore give
a more practical view of the framework and support the key arguments of the Honours

dissertation.

Additionally, the research included performance as key criteria for a good web application
framework. Therefore, an open-source web application using Struts 2.0 will undertake
some load-tests. The outcome of the tests will be evaluated in the Honours dissertation.

Chapter 2.
Project Prerequisites

To evaluate the frameworks, some programs and utilities are required. Since the process
of setting up the environment is a large part of this project, this chapter lists which of the
technologies are required for the project, gives some useful information about each of the

used tool and some important advice setting them up.

Since JEE projects are built on Java, a Java Development Kit (JDK) and Java Runtime Environ-
ment (JRE) are required. In this project the JDK version 1.5.0 Update 10 is used, since it
performs faster than its predecessor, and introduces the concept of annotations which are

used in this project for validation.

2.1. Eclipse

Eclipse (Eclipse, 2007) is one of the most used development environment. It is an open
source IDE written in Java, which goal is to incorporate the most used development tools
needed in the lifecycle of software development. Its success results of the platform indepen-
dency and its powerful API, allowing the integration of plug-ins. Eclipse can be extended
by anyone for any needs. Two plug-ins in particular were required in this project:

1. Subclipse, a plug-in to enable the functionality of Subversion in the IDE (Tigris, 2007),

and

2. m2eclipse, which helps in the building and deployment of the project.

2.2. Jboss

JBoss is a very powerful and popular application server used to deploy J2EE and JEE web
applications. It comes with the not less popular Tomcat, a Servlet container which does the

Chapter 2. Project Prerequisites

actual processing of the web application.

The latest JBoss application server can be found on the JBoss website (JBoss, 2007a). It
is recommended to install a version labeled ‘Production’, as they are stable and secure.
JBoss 4.0.5 is the most recent stable version at the time of writing, and was chosen to run
the Struts 2.0 application.

The Jboss application server offers three pre-defined servers that can be deployed: all,
default and minimal. Depending on the needs, one of these three can be chosen. For the
project, the default server is a good choice, as it offers a minimum of basic management
and analysis tools to administrate the server over the web.

2.2.1. Securing JBoss

The tools mentioned above, in particular the web- and jmx-console, must be secured. JBoss
(2007b) provides information on how to proceed and offers additional security advices. One
important security measure is to run the JBoss server with as least privileges as possible.
On Linux, a system user named ‘jboss’ can be created for this purpose. This ensures that,
in case of an intrusion, only data can be lost, which the jboss user had access to.

2.2.2. Apache and JBoss on the Same Server

Most servers run Apache in addition to JBoss on the same machine. If both servers share
the same external IP address, they cannot listen on the same port. In this case one of the
server needs to run on the HTTP port (80) and the other server on another port (per default:
8080). Two solutions are possible:

1. The first solution is to make Apache listen on port 80 and JBoss on port 8080. Apache
can then be used as external web server and proxy requests to JBoss using the
mod_proxy module for Apache (Laurie and Murcko, 1996). (see Figure 2.1)

Server
proxy
send request Apache request

\

JBoss

~| with mod_proxy

Client

Figure 2.1: Apache and JBoss, Solution 1

2. Another more common solution is to make Apache listen on port 8080 and JBoss

1
2
3

® N G

9
10

Chapter 2. Project Prerequisites

on port 80. This solution can be implemented, when Apache should be used to
exclusively deliver static content. To acquire data from Apache, the mod_jk2 module
of JBoss” Tomcat container must be installed (UCBerkeley, 2006). (see Figure 2.2)

Server
get static
send request JBoOSS resources h
> . » Apache
with mod_jk2 P
Client

Figure 2.2: Apache and JBoss, Solution 2

In the honours project, the first solution was implemented, as the already installed Apache
hosts far more web applications than JBoss. Listing 2.1 shows an extract of the configuration
file.

Listing 2.1: Configuration of a proxy and reverse proxy in Apache’s httpd.conf

NameVirtualHost 87.230.20.205:80

<VirtualHost 87.230.20.205:80>

Include ssl/sslsetup

ServerName jboss.psbase.com

ProxyPass / http://localhost :8080/

ProxyPassReverse / http://localhost :8080/

TransferLog /var/log/apache2/jboss.todofixme.com/access.log

ErrorLog /var/log/apache2/jboss.todofixme.com/error.log
</VirtualHost >

2.3. Environment Variables

Environment variables can be set in the operating system and made available to any pro-

gram requesting them. In particular, two variables are important for the project to run:

1. JAVA_HOME: This variable must be set to the to installation path of the used JDK.
Amongst others, the variable is required to inform JBoss which JDK to use. It is
possible to install more than one JDK, for instance in order to run JBoss with another
Java version, such as Java 1.4.x or Java 1.6.x. Note that the environment variable can
also be overridden in JBoss configuration files, so that the change does not affect other

programs.

2. JBOSS_HOME: This variable tells the location of the used JBoss server. However, JBoss
will set this variable automatically if it is not specified.

N o=

N

Chapter 2. Project Prerequisites

To test if the variables are correctly set, the latter can be output on console (see Listing 2.2
and 2.3).

Listing 2.2: Output environment variables on console (Windows)

C:\>echo %JAVA_HOMEY
E:\applications\Java\jdk1.5.0_10\

Listing 2.3: Output environment variables on console (GNU /Linux)

$ echo $JAVA_HOME
/usr/lib/java

2.4. Maven 2

Maven 2 is a project management framework (Massol et al., 2006, p. 22) which facilitates
the lifecycle of an application development, viz. the compilation, distribution and doc-
umentation. Maven 2 could soon become a replacement for Ant!, as it is based on best
practices acquired from the long experience and previous mistakes of Ant projects.

However, Maven 2 needs to run with a basic configuration to package the web application.
This configuration concerns some project meta-information and the listing of all required
dependencies.

2.5. Struts 2.0

The first final version of Struts 2.0 has been released in late 2006. Using Struts 2.0 is
therefore developing on the cutting edge. At the moment of writing, Struts 2.0.6 is the
latest version (Struts, 2007¢).

Struts 2.0 relies on many different key technologies, which must be understood before one
can start developing a Struts application. McCuaig (2003) therefore describes the most
important technologies and where the user can delve deeper into the subjects. The greatest
difficulty of Struts 2.0, is that it assumes that the user knows a great amount of different
tools and framework. Therefore, Struts 2.0 require a lot of reading for developers not
familiar with JEE.

lAntisa very powerful and extensible build tool comparable to ‘Make” on Linux systems. It is used in almost
all J2EE projects to build and deploy web applicationss

Chapter 3.

Demonstration Project

A demonstration project using Maven 2 and Struts 2.0 was produced, in order to evaluate
some of the features and how long it takes to apply the theory to the practice. In order
to understand the project, it is recommended to read the Honours dissertation first, as it
covers the framework architecture and different concepts used in Struts 2.0.

The project consists only of three Actions demonstrating internationalisation, client-side
validation and validation using Java 5 annotations. However, getting the Actions to work
is very time-consuming because most errors can only be discovered during runtime. How-

ever, once the first Action implemented, it is easier and faster to develop another one.

3.1. The Project Structure

The project consists of three distinct parts:

QN src/main/java Contains all Java classes.
Q src/main/resources Contains all file descriptors and resource bundles.
Q src/main/ webapp Contains the web resources for the front-end.

3.1.1. Java classes

For better maintenance, the Java files are split into three packages: action, which contains
the Action classes; exception, which contains all the Exception classes; and model, which
contains the JavaBeans. Figure 3.1 shows the action package with three Actions which all
extends the SupportBase. The latter is an abstract class which extends the ActionSupport
class from the Struts 2.0 framework. It is a good practice to have a common base class, such

as the SupportBase class, to implement common functionality required by all Actions.

G W N =

o ® N o

10

11
12
13

Chapter 3. Demonstration Project

com.psbase.hp.action)

SupportBase

| Welcome | |Va|idationDemo | | AnnotationValidationDemo

Figure 3.1: UML class diagram of the action package

3.1.2. File Descriptors and Resource Bundles

File descriptors and resources bundles are all stored together in the resources folder. The
most important file descriptors for the project are struts.xml and hp.xml, as they contain
the mapping of URLs to Actions. Listing 3.1 shows the configuration for the three Action
classes. The file shows that every Action name is bound to a class and one or more Results.
Which Result to show is decided by the Action.

Listing 3.1: Extract of hp.xml

<action name="Welcome" class="com.psbase.hp.action.Welcome">
<result>/Welcome. jsp</result>
</action>

<action name="ValidationDemo!*" method="{1}" class="com.psbase.hp.action.
ValidationDemo">
<result name="input">/ValidationDemo.jsp</result>
<result>/ValidationDemoSuccess. jsp</result>

</action>

<action name="AnnotationValidationDemo!*" method="{1}" class="com.psbase.hp.action.
AnnotationValidationDemo">
<result name="input">/AnnotationValidationDemo.jsp</result>
<result>/AnnotationValidationDemoSuccess.jsp</result>

</action>

Regarding the resource bundles, three types were considered: a global resource bundle
(globalMessages.properties) which is accessible from everywhere, a package-wide re-
source bundle (package.properties) which is only accessible from the package and its
sub-packages, and Action resource bundles which are only accessible from the Action with
the same name (e.g. Welcome.properties for the Welcome Action). To support interna-
tionalisation, a suffix of the country code can be added to the properties files, such as

Welcome_de.properties for Germany.

14

Chapter 3. Demonstration Project

3.1.3. The Front-End Files

The webapp folder contains all files related to the web application and the Servlet container.
In this project only JSPs, images and style sheets are contained in this folder. There is one
file descriptor in the WEB-INF folder which is however of interest: web.xml (see Listing 3.2).
This file tells the Servlet container for instance, that all requests /*” (line 8) should be
handled by the FilterDispatcher of Struts 2.0 (line 3).

Listing 3.2: Extract of web.xml

<filter>
<filter -name>struts2</filter -name>
<filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-class>
</filter>

<filter -mapping>
<filter -name>struts2</filter -name>
<url-pattern>/*</url-pattern>
</filter -mapping>

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

3.2. The Welcome Action

The Welcome Action is the first Action a visitor will see. Figure 3.2 shows a screenshot of
the Action.

http://jboss.psbase.com/hp/Welcome.action

Choose a Language

m English
® German

Validation Demonstration

m Client-side validation

® Annotation validation

Figure 3.2: Welcome Action

Except the text, everything is hard coded into the Validation. jsp (see Listing A.5, p. 23).

1
2
3
4
5

Chapter 3. Demonstration Project

This class tries to use some of the Struts 2.0 tags, such as s:url, s:param and s:text

and should demonstrate that even with a short JSP code, it is possible to generate a dy-

namic page, with support for internationalisation. e text messages are hold in the
ic pag ith support for internationalisati All the text g hold in th

resource bundle files mentioned in Section 3.1.2 and are dynamically retrieved depend-

ing on the request_locale parameter stored in the user’s session via a cookie or URL-

rewriting. When ‘Englisch’ or ‘German’ is chosen from the Language menu (see Figure 3.2),

request_locale is set to ‘en” or ‘de” accordingly.

3.3. The ValidationDemo Action

The ValidationDemo Action shown in Figure 3.3 was developed to test client-side validation

and the most used validation rules in Struts 2.0.

http://jboss.psbase.com/hp/ValidationDemo!input.action

Validation Demonstration

Nickname:

Birthday
(DD/MM/YY):

Age:
Email Address:
Website:

Prefered Cities:

Back to the main page

Save |

Figure 3.3: Welcome Action

The form is realised with a short and simple JSP code shown in Listing 3.3. All the data

in this form will be stored in the TestObject JavaBeam (Listing A.3, p. 21) which is made

accessible by the ValidationDemoAction (Listing A.2, p. 20).

Listing 3.3: Extract of ValidationDemoShort. jsp

<s:form action="ValidationDemo"
textfield label="%{getText(’testObject.
textfield label="%{getText(’testObject.
textfield label="Y{getText(’testObject.
textfield label="%{getText(’testObject.

<s:
<s:
<s:
<s:

emailAddress"/>

:textfield label="Y{getText(’testObject.

validate="true">

nickName ’)}" name="testObject.nickName"/>
birthDay’)}" name="testObject.birthDay"/>
age’)}" name="testObject.age"/>
emailAddress ’)}" name="testObject.

webSite ’)}" name="testObject.webSite"/>

7

8
9

Chapter 3. Demonstration Project

<s:textfield label="J{getText (’testObject.preferedCities’)}" name="testObject.
preferedCities"/>
<s:submit value="Y{getText (’>save’)}" />
</s:form>

If some test data is entered into the form and the ‘Save’ button is clicked, the form is vali-
dated on the client-side. A possible result is shown in Figure 3.4. Of course the validation

fails because the entered data is not valid.

http://jboss.psbase.com/hp/ValidationDemo.action

Validation Demonstration

Nickname is required

Nickname: |

Birthday

(DD/MM/YY): o1/01/01

Your Age must be between 18 and 65

Age: |3

The email address you entered is not valid

Email Address: |foobar

Invalid website url

Website: |foo

Please write between 5 and 50 characters for
your prefered cities

Prefered Cities: |bar

Save |

Back to the main page

Figure 3.4: ValidationDemo Action

A validation file, ValidationDemo-validation.xml (Listing A.10, p. 27) must be used to-
gether with the Action in order to validate the form. This file holds an entry for every field.
Inside each field tag, it is possible to configure as many field-validator as required. The
messages for invalid fields are obtained by the resource bundles and can therefore be set

in any language.

Only when all validation rules are respected, the form is sent to the server. The
ValidationInterceptor checks the submitted data again for security reason. Next, the

10

Chapter 3. Demonstration Project

ConversionInterceptor verifies if all received fields can be transformed to the data types
defined in TestObject. If the latter fails, the form is sent back with the appropriate conver-
sion error messages. However none of this must be configured, since these Interceptors are
already included in the default interceptor stack, which every Action uses by default.

Finally, if no errors were found, the ValidationDemoSuccess. jsp (Listing A.7, p. 25) is used
to display the result. Figure 3.5 shows the result in the browser.

http://jboss.psbase.com/hp/ValidationDemo!input.action

Validation Demonstration

Thank you Nicolas!
Your Submission was successful :-)

Back to the main page

Figure 3.5: ValidationDemo Action

3.4. The AnnotationValidationDemo Action

The problem with the previous Action was that three files had to be managed to make
the validation work: the Action, the resource bundles and the validation file. However,
with annotations it is possible to handle the validation inside the Action. An Action called
AnnotationValidationDemo has been developed for this purpose. Figure 3.6 displays a
browser screenshot of the Action.

http://jboss.psbase.com/hp/AnnotationValidationDemo!input.action

Annotation Validation Demo

Nickname is required

Nickname: |

Save |

Back to the main page

Figure 3.6: AnnotationValidationDemo Action

The Action contains only one field, which is required. By adding a
ORequiredFieldValidator annotation above the setter method of that field, Struts 2.0
validates the field (see Listing 3.4). As shown on Figure 3.6, validation works.

11

[B S

Chapter 3. Demonstration Project

Listing 3.4: Extract of AnnotationValidationDemo. java

@RequiredFieldValidator (
type = ValidatorType.FIELD,
message = "Nickname is required")
public void setNickName (String nickName) {
this.nickName = nickName;

}

3.5. Summary

This chapter covered some practical example of what can be done with Struts 2.0. Even
though the examples might look simple, it takes a great amount of effort and patience
to implement and debug the application. However, with more practice and experience,
developer should be able to rapidly implement a working enterprise web application.

12

Chapter 4.

Load-Testing

4.1. Setting Up the Test Environment

To analyse the performance of Struts 2.0 applications, a distributed load-test environment
was set up. Figure 4.1 illustrates the used network topology. One system runs the JBoss ap-
plication server, with a test application, and an additional system runs the JMeter software
to load-test the application. Both Systems are on a dedicated network, connected together
with a 100 Mbit switch.

Server System 100 Mbit switch Client System
With JBoss With JMeter

Apact

JlieiEsye

Figure 4.1: Summary report

Table 4.1 lists the most important settings for the used systems. Both run the Windows XP
operating system with SP2. Windows XP is the minimum configuration for load-testing,
as older Windows systems do not allow more than 50-60 simultaneous connections. Also,
both servers have enough memory installed, which means that the server’s limits will
probably be reached because of the CPU speed and/or the hard drive access time.

Another important factor is the configuration regarding JBoss. Table 4.2 shows the most im-
portant settings. JBoss comes with three different pre-built servers, which already contains
some basic web applications to monitor and manage the application server. Mentioning
which server was chosen is important, because JBoss will use a certain amount of memory
to deploy the server’s applications. In the test case, the ‘default’ server was chosen.

Additionally, the test client accesses the server directly with the server’s IP address, to
avoid the overhead of a DNS lookup. Furthermore the server is accessed directly on its

13

Chapter 4. Load-Testing

Server System Test Client System
(O] Windows XP Pro SP2 Windows XP Pro SP2
JDK/JRE jdk1.5.0_10 jre1.5.0_10
NIC 100 MBit 100 MBit
CPU Athlon XP 3200+, 2.01 GHz Intel Pentium M, 1.60 Ghz
Memory total 2048 MB 1280 MB
Memory free > 1024 MB > 320 MB
Hard drives Mirror Raid: 2 x 300GB WD | n/a

Caviar with 7200 rpm and

16MB buffer on NVidia nForce

SATA?2 Raid Controller

Table 4.1: Configuration of test systems

JBoss
Min memory for JBoss | 128 MB
Max memory for JBoss | 512 MB

Used server default + struts2-mailreader-2.0.6.war

Table 4.2: Configuration of JBoss

port 8080, instead of being tunnelled through the Apache Proxy. This is a precautionary
measure to ensure that the Apache server won’t be a bottle-neck. Finally, an initial test will
be executed once prior to data gathering, because the application might need to compile
the JSPs to Servlets, which is a relatively slow one-time process.

Both systems were configured to run a minimum of processes to guaranty that the CPU
is fully dedicated to JBoss on the server and JMeter on the client system accordingly. To
further guaranty that JBoss and JMeter get most of the CPU time, both run with a high
priority (windows priority 13). During a first test, JBoss and JMeter were monitored re-
garding their CPU usage. Figure 4.2 and 4.3 shows the result of that monitoring. JBoss
uses up to 91.89% of the CPU power available, which is an acceptable value. Figure 4.3, in
turn, shows that JMeter only uses a total of 7.81% of the available CPU, which ensures that
JMeter will not be the cause for soffered performance losses.

14

Chapter 4. Load-Testing

— CPU Usage Histom — CPU Uzage History

Figure 4.2: CPU History of javaw.exe process Figure 4.3: CPU History of javaw.exe process
owned by JBoss. owned by JMeter.

4.2. The Tested Web Application

The application, which will be load-tested, is the open source Struts MailReader 2. The
latter allows to create, login and logout users; edit a user profile; and add, edit and remove
subscriptions to IMAP or POP3 hosts. The application scope (usually a database) is imple-
mented as XML file and permanently stores all the user data for the time JBoss is running.
It is possible that the single XML file will be a bottle neck, as many request will need to

access this file simultaneously.

4.3. The Load-Tester

For the load-testing, Apache JMeter (Apache, 2007) will be used. It is a free Java desktop
application designed to load test functional behaviour and measure performance. The
program was originally designed for testing web application. It is possible to execute
HTTP requests on a web server and supply the requests with parameters.

4.4. Building a Test Plan

To create a so-called test plan, JMeter provides an easy to use GUI application as shown in
Figure 4.4. The test plan consists of HTTP requests displayed in the left frame of the GUL
By adding enough HTTP requests it is possible to build a scenario, where the user logs in,
add and removes a subscription, and logs out. Appendix B shows the screenshots of that

scenario.

The JMeter application provide a proxy feature which allows the ‘recording’” of a scenario.
To take advantage of that feature, JMeter must be configured as proxy, which will allow
the saving of all requests sent to the web application. This is a huge advantage, because

JMeter also saves all the parameters used in a request.

15

Chapter 4. Load-Testing

ETestPlan.jmx (D:%projects’,jmeter'hp’ TestPlan.jmx) - Apache JMeter - |EI|1|
File Edit Bun Options Help
0/0
7 J5 TestPlan
¢ I Threan Group HTTP Request
43¢ HTTP Request Defauts Name: |${appySubscription_save.do |
4888 HTTP Cookie Manager Waeb Server
D,Coumer Server Mame or IP: |${server} |
t},- Constart Timer
o ;"Sﬁ{app}n-'\relcome.do Port Number: [§{port} |
o /% StappiLocin_input.da HTTP Request
o {’ Fiapp ylogin.do
& /* ${app)Mainkieru do Protocal {default http}: [${pratacol} Method: [POST |+
°'j{’${app}ﬁegistration_inpm.do
[f’ Fiapp Pubscription_input.do Path: |${app}!8ubscri ption_save.do |
488 Browser-derived heaclers [] Redirect Automatically [] Follow Redirects] Use KeepAlive
[} xpath Extractar
o f I:ﬁ{app}!Subscription_save o Send Parameters With the Request:
o= f’${app},ﬂegimaﬁon_inpm_do Harme: Walue Encode? |Include Egu..
[f’ HappSubscrigtion_delete.do struts.token.name struts.token L] v] -
& derived head task Create [v
H8§ Broveser-derived headers host barpithreadcounter} O v
[xpeth Extractor subscription.username testusert + [] [v]
o j{’ F{app¥Subscription_save do subscription. password hons [] v =
L f" F{app Registration_input o subscription type __ irmap L Ld
4l Erovvser-derived headers __checkhoy_subscription.auto ... |true L vl
hutton.zave Save L] v]
[xpatn Extractor struts taken §{strutstoken} L = -
o= f"${app}IRegistration_save.do
o /% $appiLogout do Send a File With the Request:
LS ;’ Fiapp iiielcome.do il | | | 8 |
Spline Visuslizer flename: TOWSE...
Graph Resutts Walue for "name" attribute: |
iy Results Tree MIME Type: | |
Agoregate Graph
Aggregate Report Optional Tasks
Summary Report
WiarkEBench [] Retrieve &ll Embedded Resources from HTML Files [] Use as Monitor

Figure 4.4: Screenshot of the JMeter application. Current view: Configuratiom of Subscrip-
tion_save.do

The configuration of a test plan is however time-consuming. A Test Plan usually con-
sists of a Thread Group, where it is possible to define how many times the samples inside
the Thread Group should be executed. The Thread Group also hold the settings about
the number of simultaneous users and in which time period (ramp-up period) the users
should start the thread. As shown on Figure 4.4, it is possible to configure other ele-
ments, such as the HTTP Cookie Manager, which enables the request to accept cookies.
Additionally, a Counter was added to allow simultaneous threads to use unique data. The
right frame of Figure 4.4 shows the request parameters which will be used for the cur-
rently highlighted Subscription_save.do Action. The ‘host’ parameter has the value of
‘bar${threadcounter}’, which means that the value of this parameter will differ for ev-

ery user, thereby preventing two users to send the same host parameter. Another element

16

Chapter 4. Load-Testing

in the Thread Group is the Constant Timer, which can be configured to allow a certain
time to elapse between each sample. Finally Struts 2.0 uses tokens to prevent double sub-
mits. If the sent token does not match the token written in the html form, Struts 2.0 will
assume that the form has been already submitted and will not take the request into ac-
count. Because these tokens change for every new request, it is necessary to extract the
token from the HTML form. This can be done with the XPath Extractor which looks for
‘/html/body/form/input [@name=’struts.token’]/@value’ in the XHTML response and

makes the value available as ‘${strutstoken}’ variable.

Once the test plan works without any errors, it is possible to add Listeners. Many different
exist, but the most important are the Graph Results, which show a graphical representation
of the gathered data, and the Summary Report, which represent overall results in a table.

4.5. The Load-Tests

Two load-tests have been realised. The first is a single-user load-test to find out about the
different response times of each tested Struts 2.0 features. The second, in turn, is a multi-
user load-test which should clarify how many simultaneous users can be supported and
were Struts 2.0 has its limits. The results of the load-tests are analysed and interpreted in
the Honours dissertation.

17

Chapter 5.
Conclusion

The practical part of the research covered an implementation of a web application using
Struts 2.0, and a load-test of an open-source web application.

In theory, Struts 2.0 is an excellent framework, which separates concerns and offers a lot of
great concepts and functionality. However, the implementation of a small web application
has shown that in practice a lot of time can be consumed in debugging the application
and searching for errors, as they occur only during runtime. This is mainly because files
are maintained in different location as explained in Section 3.1, The Project Structure. An
Action consists of several different parts. If one of these parts is changed, it required some
adaptation in the other parts. In the currently available IDEs, refactoring over different
types of files is not perfect yet, which means that all parts of an Action must be adapted
by hand. However, as mentioned in Section 3.4, The AnnotationValidationDemo Action, it
is possible to use annotations to decrease the number of files to manage.

In addition, the load-tests were a necessary part of this research, as they would show if
Struts 2.0 is capable of handling many simultaneous connections. JMeter is a great software
to realise the tests: It is free and offers a lot of functionality to handle cookies, URL-
rewriting, counters and useful ways to extract text out of the response. Results are however
analysed and evaluated in the dissertation, and therefore not covered in this report.

18

Chapter 6.

Resources

Content on the Web

© nhttp:/ /jboss.psbase.com/hp/
Hosts the demonstration application.

© nhttp://www.psbase.com/hp/

Hosts the Java documentation of the project.

© https://guest:guest@svn.psbase.com/cal033a_project/

Host the demonstration project Subversion repository.

Content on the CD

QN Documentation

Q Project Files

QN Software

QN Web Archives

Contains this project report, its source code, and the Java docu-
mentation of the project.

Contains the JMeter test plan and the source code of the demon-
stration web application.

Contains all the software used to implement the project.

Contains the web applications as deployable WAR
files. hp.war is the demonstration web application, and
struts2-mailreader-2.0.6.war is the Struts 2.0 Mailreader
application used for the load-tests.

19

http://jboss.psbase.com/hp/
http://www.psbase.com/hp/
https://guest:guest@svn.psbase.com/ca1033a_project/

Appendix A.

Project Files

A.1l. Java Files

Listing A.1: Welcome java

1 package com.psbase.hp.action;

* This is the Welcome Page of the Demonstration Site.

4
5
6 * Qauthor Nicolas Lanquetin (0604918)

7 * Q@version $Id: Welcome.java 20 2007-05-08 14:37:54Z ps $
8 */

9 public class Welcome extends SupportBase {

10

Listing A.2: ValidationDemo.java

package com.psbase.hp.action;

import com.psbase.hp.model.TestObject;

1

2

3

4

5 /*%
6 * This Action is a Demo, used to validate all fields of the

7 * TestObject.

8

9 * Qauthor Nicolas Lanquetin (0604918)

10 * Q@version $Id: ValidationDemo.java 20 2007-05-08 14:37:54Z ps $
11 * @see TestObject

12 x/

13 public class ValidationDemo extends SupportBase {

14

15 private static final long serialVersionUID = -7548250779091041743L;
16

17 private TestObject testObject = null;

18
19 public TestObject getTestObject () {
20 return testObject;

20

Appendix A. Project Files

public void setTestObject(TestObject testObject) {

this.testObject = testObject;

Listing A.3: TestObject.java

package com.psbase.hp.model;

import java.sql.Date;

/ * %

* This is JavaBean Test Object which holds different kinds

* of types, which can be used for validation.
*

* Qauthor Nicolas Lanquetin (0604918)

* Qversion $Id: TestObject.java 20 2007-05-08 14:37:54Z ps §

*/
public class TestObject implements ModelObject {

private static final long serialVersionUID = 3724482471979777317L;
private String nickName = null; // requiredStringValidatorField
private Date birthDay = null; // integerValidatorField

private Integer age = null; // dateValidatorField

private String emailAddress = null; // emailValidatorField

private String webSite = null; // urlValidatorField

private String preferedCities = null; // stringlengthValidatorField

public Integer getAge() {
return age;

public void setAge(Integer age) {
this.age = age;

public Date getBirthDay () {
return birthDay;

public void setBirthDay(Date birthDay) {
this.birthDay = birthDay;

public String getEmailAddress () {
return emailAddress;

public void setEmailAddress (String emailAddress)

this.emailAddress = emailAddress;

{

21

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

68
69

O N U ke W N

T T T N O N S N T S
N & G & @ N » S © ® 9 0 O k& ® 8N = O

Appendix A. Project Files

public String getNickName () {

return nickName;

public void setNickName (String nickName) {
this.nickName = nickName;

public String getPreferedCities () {

return preferedCities;

public void setPreferedCities(String preferedCities) {
this.preferedCities = preferedCities;

public String getWebSite () {

return webSite;

public void setWebSite(String webSite) {
this.webSite = webSite;

Listing A.4: AnnotationValidationDemo.java

package com.psbase.hp.action;

import com.opensymphony.xwork2.ActionSupport;
import com.opensymphony.xwork2.validator.annotations.RequiredFieldValidator;
import com.opensymphony.xwork2.validator.annotations.Validation;

import com.opensymphony.xwork2.validator.annotations.ValidatorType;

/* *

* This class is to demonstrate validation using Java 1.5 Annotations

*

* Qauthor Nicolas Lanquetin (0604918)

* Qversion $Id: AnnotationValidationDemo.java 23 2007-05-09 05:58:30Z ps $
*/

QValidation

public class AnnotationValidationDemo extends ActionSupport {

private static final long serialVersionUID = -5738948001604664556L;

private String nickName = null;

public String getNickName () {

return nickName;

@RequiredFieldValidator (

type = ValidatorType.FIELD,

message = "Nickname is required")
public void setNickName (String nickName) {

22

Appendix A. Project Files

28 this.nickName = nickName;

A.2. JSP Files

Listing A.5: Welcome.jsp

<h--

@author Nicolas Lanquetin

@version $Id: Welcome.jsp 23 2007-05-09 05:58:30Z ps $
-=%>

[

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib prefix="s" uri="/struts-tags" %>

O N G ke W N

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtmll -transitional.dtd">

10 <html xmlns="http://www.w3.o0org/1999/xhtml" xml:lang="en" lang="en">

11 <head>

12 <title><s:text name="sitetitle"/> - <s:text name="pagetitle"/></title>
13 <link href="css/styles.css" rel="stylesheet" type="text/css"/>

14 </head>

15

16 <body>

17 <hl1><s:text name="sitetitle"/></h1l>

18 <div id="container">

19 <div id="table-wrapper">

20

21 <h2><s:text name="welcome.language.choose"/></h2>

22 <div id="content">

23

24 <1i>

25 <s:url id="url" action="Welcome">

26 <s:param name="request_locale">en</s:param>

27 </s:url>

28 <s:a href="%{url}"><s:text name="welcome.language.en"/></s:a>
29 </1i>

30 <1li>

31 <s:url id="url" action="Welcome">

32 <s:param name="request_locale">de</s:param>

33 </s:url>

34 <s:a href="Y{url}"><s:text name="welcome.language.de"/></s:a>
35 </1li>

36

37 </div>

38

39 <h2><s:text name="welcome.validation.test"/></h2>

40 <div id="content">

41

23

42

43

O e N U W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26

27

28

29
30
31
32
33
34

Appendix A. Project Files

<s:a href="ValidationDemo!input.action"><s:text name="welcome.

validation.client"/></s:a></1li>

<s:a href="AnnotationValidationDemo!

input.action"><s:text name="

welcome.validation.annotation"/></s:a></1i>

</div>

</div>
</div>
</body>
</html>

Listing A.6: ValidationDemo.jsp

<h--

@author Nicolas Lanquetin

@version $Id: ValidationDemo.jsp 20 2007-05-08 14:

-=%>

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ taglib prefix="s" uri="/struts-tags" %>

37:547Z ps $

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtmll -transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title><s:text name="sitetitle"/> - <s:text name="pagetitle"/></title>
<link href="css/styles.css" rel="stylesheet" type="text/css"/>

</head>

<body>

<h1><s:text name="sitetitle"/></hl>
<div id="container">
<div id="table-wrapper">
<h2><s:text name="pagetitle"/></h2>

<s:form action="ValidationDemo" validate="true">

<s:textfield label="Y{getText(’>testObject.

nickName" />

<s:textfield label="J{getText(’testObject.

birthDay"/>

<s:textfield label="Y{getText(’testObject.
<s:textfield label="Y{getText(’testObject.

emailAddress" />

<s:textfield label="Y{getText(’testObject.

webSite"/>

<s:textfield label="%{getText(’testObject.

testObject.preferedCities"/>
<s:submit value="%{getText (’save’)}" />
</s:form>

<div id="content">
<p><a href="<s:url action="Welcome"/>"><s
</div>

nickName ’) }" name="testObject.
birthDay ’)}" name="testObject.

age’)}" name="testObject.age"/>

emailAddress ’)}" name="testObject.
webSite ’)}" name="testObject.

preferedCities’)}" name=

:text name="back2main"/></p>

24

O ® N U ke W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

O ® N U e W N =

10

Appendix A. Project Files

</div>
</div>
</body>
</html>

Listing A.7: ValidationDemoSuccess.jsp

<h--

@author Nicolas Lanquetin

@version $Id: ValidationDemoSuccess.jsp 17 2007-05-08 10:57:55Z ps $

-=%>

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ taglib prefix="s" uri="/struts-tags" %

>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtmll -transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
<head>

xml:lang="en"

lang="en">

<title><s:text name="sitetitle"/> - <s:text name="pagetitle"/></title>

<link href="css/styles.css" rel="stylesheet"

</head>

<body>
<h1><s:text name="sitetitle"/></hl>
<div id="container">

<div id="table-wrapper">

<h2><s:text name="pagetitle"/></h2>

<div id="content">

type="text/css"/>

<p><s:text name="thankyou"/> <s:property value="testObject.nickName"/>!

<s:text name="va1idation.successful“/></p>

<p><a href="<s:url action="Welcome"/>"><s:text name="back2main"/></p>

</div>
</div>
</div>
</body>
</html>

Listing A.8: AnnotationValidationDemo.jsp

<h--

@author Nicolas Lanquetin

@version $Id: AnnotationValidationDemo.jsp 23 2007-05-09 05:58:30Z ps $

-=%>

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ taglib prefix="s" uri="/struts-tags" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtmll -transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
<head>

xml:lang="en"

lang="en">

25

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

[

O ©® N G ke W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Appendix A. Project Files

<title><s:text name="sitetitle"/> - <s:text name="pagetitle"/></title>

<link href="css/styles.css" rel="stylesheet" type="text/css"/>

</head>

<body>
<h1><s:text name="sitetitle"/></h1l>
<div id="container">

<div id="table-wrapper">

<h2><s:text name="pagetitle"/></h2>

<s:form action="AnnotationValidationDemo"

validate="true">

<s:textfield label="%{getText(’nickName’)}" name="nickName"/>

<s:submit value="Y{getText (’save
</s:form>

<div id="content">

7)}:1 />

<p><a href="<s:url action="Welcome"/>"><s:text name="back2main"/></p>

</div>
</div>
</div>
</body>
</html>

Listing A.9: AnnotationValidationDemoSuccess.jsp

<%h--

Qauthor Nicolas Lanquetin

@version $Id: AnnotationValidationDemoSuccess.jsp 21 2007-05-08 14:41:31Z ps $

-=%>

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib prefix="s" uri="/struts-tags" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtmll -transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
<head>

xml:lang="en"

lang="en">

<title><s:text name="sitetitle"/> - <s:text name="pagetitle"/></title>

<link href="css/styles.css" rel="stylesheet" type="text/css"/>

</head>

<body>
<hl1><s:text name="sitetitle"/></h1l>
<div id="container">

<div id="table-wrapper">

<h2><s:text name="pagetitle"/></h2>

<div id="content">

<p><s:text name="thankyou"/> <s:property value="nickName"/>!

<s:text name="validation.successful"/></p>

<p><a href="<s:url action="Welcome"/>"><s:text name="back2main"/></p>

</div>
</div>
</div>

26

Appendix A. Project Files

29 </body>
30 </html>

A.3. Validation Files

Listing A.10: ValidationDemo-validation.xml

1 <!DOCTYPE validators PUBLIC "-//OpenSymphony Group//XWork Validator 1.0.2//EN" "http:
//www.opensymphony .com/xwork/xwork-validator-1.0.2.dtd">

2
3 <validators>
4 <field name="testObject.nickName">

<field-validator type="required">

<message key="requiredstring"/>

</field-validator>

</field>

o ® N’

10 <field name="testObject.birthDay">

11 <field-validator type="required">

12 <message key="requiredstring"/>

13 </field-validator>

14 <field-validator type="date">

15 <param name="min">01/01/1942</param>

16 <param name="max">01/01/1989</param>

17 <message key="testObject.birthDay.invalid.date"/>
18 </field-validator>

19 <field-validator type="conversion">

20 <param name="repopulateField">true</param>

21 <message key="testObject.birthDay.invalid.conversion"/>
22 </field-validator>

23 </field>

24

25 <field name="testObject.age">

26 <field-validator type="required">

27 <message key="requiredstring"/>

28 </field-validator>

29 <field-validator type="conversion">

30 <param name="repopulateField">true</param>
31 <message key="testObject.age.invalid.conversion"/>
32 </field-validator>

33 <field-validator type="int">

34 <param name="min">18</param>

35 <param name="max">65</param>

36 <message key="testObject.age.invalid.int"/>
37 </field-validator>

38 </field>

39

40 <field name="testObject.emailAddress">

41 <field-validator type="required">
42 <message key="requiredstring"/>
43 </field-validator>

27

Appendix A. Project Files

<field-validator type="email'">

<message key="testObject.emailAdress.invalid.email"/>

</field-validator>
</field>

<field name="testObject.webSite">
<field-validator type="required">
<message key="requiredstring"/>
</field-validator>
<field-validator type="url">
<message key="testObject.webSite.invalid.url"/>
</field-validator>
</field>

<field name="testObject.preferedCities">
<field-validator type="required">
<message key="requiredstrings"/>
</field-validator>
<field-validator type="stringlength">
<param name="minLength">5</param>
<param name="maxLength">50</param>
<param name="trim">true</param>
<message key="testObject.preferedCities.invalid
</field-validator>
</field>
</validators>

.stringlength"/>

28

Appendix B.

The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Welcome.do

MailReader Demonstration Application Options

o Register with the MailReader Demonstration Application
e |_og on to the MailReader Demonstration Application

Language Options

m

lish

i

ussian

Figure B.1: Screenshot of the Welcome screen

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Login_input.do

Username: ftestuser1

Password: [***

Save

_Save |
Reset |
_Cancel |

Cancel

Figure B.2: Screenshot of Login screen

http://192.168.0.1:8080/struts2-mailreader-2.0.6/MainMenu.do
Main Menu Options for testuserl

e Edit your user registration profile
e Log off MailReader Demonstration Application

Figure B.3: Screenshot of the main menu

29

Appendix B. The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Registration_input.do

Username: testuserl

Password: |

(Repeat) Password: |

Full Name: |testuser1

From Address: |testusers@testers.com

Reply To Address: |testusers@testers.com

Save |
Reset |
Cancel |

Current Subscriptions

Host Name User Name Server Auto Action

Type

Add

Figure B.4: Screenshot of the registration screen, showing the subscriptions

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Subscription_input.do

Username: testuserl

Mail Server: |mai|.yahoo.com

Mail Username: Jtestuser
Mail Password: |hons

Server Type: |POP3 Protocol ¥

[Auto Connect

Save |
Reset |
Cancel |

Figure B.5: Screenshot of the screen to add a new subscription

30

Appendix B. The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Registration_input.do

Username: testuserl

Password: |

(Repeat) Password: |

Full Name: |testuser1

From Address: |testusers@testers.com

Reply To Address: |testusers@testers.com

Save |
Reset |
Cancel |

Current Subscriptions

Host Name User Name Server Auto Action
Type
mail.yahoo.com testuserl pop3 fase | Delete Edit

Add

Figure B.6: Screenshot of registration screen with a new subscription

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Subscription_delete.do?host=mail.yahoo.com
Username: testuserl

Mail Server: mail.yahoo.com
Mail Username: testuserl

Mail Password: hons

Server Type: pop3

Auto Connect: false

Confirm |

Figure B.7: Screenshot of the screen to delete a subscription

31

Appendix B. The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Registration_save.do

Username: testuserl
Password: |
(Repeat) Password: |
Full Nameis required
Full Name: |
From Addressis required
From Address: |

Reply To Address: |

Save |
Reset |
Cancel |

Current Subscriptions

Host Name User Name Server Auto Action

Type

Add

Figure B.8: Screenshot of a submitted form where validation failed.

32

Appendix C.

Honours Project Class Documentation

C.1. Honours Project Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

com.psbase.hp.action.AnnotationValidationDemo
com.psbasehp.Constants Lo L
com.psbase.hp.model.ModelObject

com.psbase.hp.model.TestObject

com.psbase.hp.exception.ResultNotSetException
com.psbase.hp.action.SupportBase 0 L.

com.psbase.hp.action.ValidationDemo
com.psbase.hp.action.Welcome

C.2. Honours Project Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

com.psbase.hp.action.AnnotationValidationDemo
com.psbase.hp.Constants o oo oL
com.psbase. hp.model.ModelObject
com.psbase.hp.exception.ResultNotSetException
com.psbase.hp.action.SupportBase 0 000
com.psbase.hp.model.TestObject
com.psbase.hp.action.ValidationDemo
com.psbase.hp.action.Welcome

33

Appendix C. Honours Project Class Documentation

C.3. com.psbase.hp.action.AnnotationValidationDemo Class

Reference

C.3.1. Detailed Description

This class is to demonstrate validation using Java 1.5 Annotations
Author:
Nicolas Lanquetin (0604918)
Versidn:
AnnotationValidationDemo.java 23 2007-05-09 05:58:30Z ps

The documentation for this class was generated from the following file:

* E:/projects/java/hp/src/main/java/com/psbase/hp/action/ AnnotationValidationDemo.java

34

Appendix C. Honours Project Class Documentation

C.4. com.psbase.hp.Constants Class Reference

Static Public Attributes

e static final String CANCEL = "cancel"
e static final String CREATE = "Create"
e static final String EDIT = "Edit"

* static final String DELETE = "Delete"

C.4.1. Detailed Description

This Class holds all constants required in this appplication.

Author:

Nicolas Lanquetin (0604918)
Versldn:

Constants.java 20 2007-05-08 14:37:54Z ps

C.4.2. Member Data Documentation
C.4.2.1. final String com.psbase.hp.Constants. CANCEL = "cancel"

The token representing a "cancel" request.

C.4.2.2. final String com.psbase.hp.Constants. CREATE = "Create"

The token representing a "create" task.

[static]

[static]

C.4.2.3. final String com.psbase.hp.Constants.EDIT = "Edit" [static]

The token representing a "edit" task.

C.4.2.4. final String com.psbase.hp.Constants.DELETE = "Delete"

The token representing a "delete" task.

The documentation for this class was generated from the following file:

[static]

35

Appendix C. Honours Project Class Documentation

¢ E:/projects/java/hp/src/main/java/com/psbase/hp/Constants.java

36

Appendix C. Honours Project Class Documentation

C.5. com.psbase.hp.model.ModelObject Interface Reference

Inherited by com.psbase.hp.model. TestObject.

C.5.1. Detailed Description

ModelObject is an Interface for all ModelObjects.
Author:
Nicolas Lanquetin (0604918)
Versldn:
ModelObject.java 20 2007-05-08 14:37:54Z ps
The documentation for this interface was generated from the following file:

* E:/projects/java/hp/src/main/java/com/psbase/hp/model/ModelObject.java

37

Appendix C. Honours Project Class Documentation

C.6. com.psbase.hp.exception.ResultNotSetException Class

Reference

C.6.1. Detailed Description

The ResultNotSetException is thrown when no Action Result was set.
Author:
Nicolas Lanquetin (0604918)
Versldn:
ResultNotSetException.java 17 2007-05-08 10:57:55Z ps

The documentation for this class was generated from the following file:

* E:/projects/java/hp/src/main/java/com/psbase/hp/exception/ResultNotSetException.java

38

Appendix C. Honours Project Class Documentation

C.7. com.psbase.hp.action.SupportBase Class Reference

Inherited by com.psbase.hp.action.ValidationDemo, and com.psbase.hp.action.Welcome.

C.7.1. Detailed Description

This is the Base Action Class for all Action Classes. It holds common functionality.
Author:
Nicolas Lanquetin (0604918)
Versldn:
SupportBase.java 20 2007-05-08 14:37:54Z ps
The documentation for this class was generated from the following file:

* E:/projects/java/hp/src/main/java/com/psbase/hp/action/SupportBase java

39

Appendix C. Honours Project Class Documentation

C.8. com.psbase.hp.model.TestObject Class Reference

Inherits com.psbase.hp.model.ModelObject.

C.8.1. Detailed Description

This is JavaBean Test Object which holds different kinds of types, which can be used for
validation.
Author:

Nicolas Lanquetin (0604918)
Versldn:

TestObiject.java 20 2007-05-08 14:37:54Z ps

The documentation for this class was generated from the following file:

¢ E:/projects/java/hp/src/main/java/com/psbase/hp/model/TestObject.java

40

Appendix C. Honours Project Class Documentation

C.9. com.psbase.hp.action.ValidationDemo Class Reference

Inherits com.psbase.hp.action.SupportBase.

C.9.1. Detailed Description

This Action is a Demo, used to validate all fields of the TestObject.
Author:

Nicolas Lanquetin (0604918)
Versldn:

ValidationDemo.java 20 2007-05-08 14:37:54Z ps

See also:

TestObject
The documentation for this class was generated from the following file:

¢ E:/projects/java/hp/src/main/java/com/psbase/hp/action/ValidationDemo.java

41

Appendix C. Honours Project Class Documentation

C.10. com.psbase.hp.action.Welcome Class Reference

Inherits com.psbase.hp.action.SupportBase.

C.10.1. Detailed Description

This is the Welcome Page of the Demonstration Site.
Author:
Nicolas Lanquetin (0604918)
Versldn:
Welcome java 20 2007-05-08 14:37:54Z ps
The documentation for this class was generated from the following file:

* E:/projects/java/hp/src/main/java/com/psbase/hp/action/Welcome.java

42

Index of Honours Project Classes

CANCEL
com::psbase::hp::Constants, 35
com::psbase::hp:action:: AnnotationValidationDemo,
34
com::psbase::hp::action::SupportBase, 39
com::psbase::hp::action::ValidationDemo,
41
com::psbase::hp::action::Welcome, 42
com::psbase::hp::Constants, 35
CANCEL, 35
CREATE, 35
DELETE, 35
EDIT, 35
com::psbase::hp::exception::ResultNotSetException,
38
com::psbase::hp::model::ModelObject, 37
com::psbase::hp::model::TestObject, 40
CREATE

com::psbase::hp::Constants, 35

DELETE

com::psbase::hp::Constants, 35

EDIT

com::psbase::hp::Constants, 35

43

Glossary

Notation
AJAX

ASF

EAR
HTTP
IRC

J2EE
JAR

JDK

JEE

Description

Asynchronous JavaScript and XML: AJAX is used to
only refresh specific parts of a website instead of reloading
the entire page.

Apache Software Foundation: The Apache Software
Foundation is a non-profit corporation, operating many dif-
ferent web related projects and a wide community of mem-
bers.

Enterprise ARchive: An EAR file packages one or more
WAR:s.

Hypter Text Transfer Protocol: HI'TP is amongst others
the protocol used to browse the World Wide Web.

Internal Relay Chat: HTTP is amongst others the protocol
used to browse the World Wide Web.

Java 2 Platform, Enterprise Edition: J2EE is a version of
Java for developing and deploying enterprise applications.
Java ARchive: JAR is a file format used to package Java
applications

Java Development Kit: The Java Development Kit is a
collection of developer tools for Java developers provided by
Sun Microsystems.

Java Platform, Enterprise Edition: Formerly known as
J2EE up to version 1.4, the term JEE is now used for web
application running on version 5 of the Java Platform.

44

Index of Honours Project Classes

Notation Description

JRE

JSF

JSP

MVC

POM

URL

W3C

WAF

WAR

XHTML

XML

Java Runtime Environment: The Java Runtime Environ-
ment is a collection of libraries and other components pro-
vided by Sun Microsystems that allows a computer system
to run applets and applications written in the Java program-
ming language.

Java Server Faces: JSF is a Java-based web application
framework.

Java Server Pages: JavaServer Pages is a server side script-
ing language developed by Sun Microsystems that is used by
Java developers to dynamically generate web pages.

Model View Controller: A paradigm, stating that the data
(model) should be seperated from the user interface (view)
and the processing (controller).

Project Object Model: The POM is an XML file, which
holds the entire configuration for Maven projects.

Uniform Resource Locator: A URL is the unique address
for a file that is accessible on the Internet.

The World Wide Web Consortium: The W3C defines the
specifications and guidelines for internet standards.

Web Application Framework: A WAF provides various
functionalities required to build a web application.

Web ARchive: A WAR file is a JAR used to deploy a col-
lection of resources needed for a Java web application.

eXtensible Hypter Text Markup Language: XHTML
is a text-based markup language written in XML for the
creation of web pages. It has been developed by the W3C as
the successor of HTML.

eXtensible Markup Language: XML is a general-purpose
markup language for creating special-purpose markup lan-
guages, and is used to describe different kinds of data.

45

Bibliography

Apache. 2007. “Apache JMeter.”. Available at: http://jakarta.apache.org/jmeter/.
Eclipse. 2007. “Eclipse.org home.”. Available at: http://www.eclipse.org.

Hermanns, Rainer, Ted Husted and Don Brown. 2006. “Validation Annotation.”. Available
at: http:/ /struts.apache.org/2.0.6/docs/validation-annotation.html.

JBoss. 2007a. “Apache Reference: mod_proxy.”. Available at:
http:/ /labs.jboss.com/portal /jbossas/download/.

JBoss. 2007b. “Securing JBoss.” Jboss Wiki . Available at:
http:/ /wiki.jboss.org/wiki/Wiki.jsp?page=Secure]Boss.

Laurie, Ben and Chuck Murcko. 1996. “Apache Reference: mod_proxy.”. Available at:
http:/ /www.apacheref.com/ref/mod_proxy.html.

Lightbody, Patrick. 2007. “WebWork (Struts 2) In Action.”. Available at:
http:/ /www.infoq.com/presentations/struts-2-webwork-pat-lightbody.

Lightbody, Patrick, Rene Gielen, Philip Luppens, Don Brown, Ted Husted and Musachy
Barroso. 2007. “Validation.”. Available at:
http:/ /struts.apache.org/2.0.6/docs/validation. html.

Lightbody, Patrick and Ted Husted. 2006. “Client Side Validation.”. Available at:
http://struts.apache.org/2.0.6/docs/ client-side-validation.html.

Massol, Vincent, Jason va Zyl, Brett Porter, John Casey and Carlos Sanchez. 2006. Better
Builds with Maven. Mergere Inc.

McCuaig, Pann. 2003. “Debian Packaging System.”. Available at:
http:/ /www.chuug.org/talks/20030325/.

Struts. 2007a. “Apache Struts 2 Documentation.”. Available at:
http:/ /struts.apache.org/2.0.6/docs/home.html.

46

http://jakarta.apache.org/jmeter/
http://www.eclipse.org
http://struts.apache.org/2.0.6/docs/validation-annotation.html
http://labs.jboss.com/portal/jbossas/download/
http://wiki.jboss.org/wiki/Wiki.jsp?page=SecureJBoss
http://www.apacheref.com/ref/mod_proxy.html
http://www.infoq.com/presentations/struts-2-webwork-pat-lightbody
http://struts.apache.org/2.0.6/docs/validation.html
http://struts.apache.org/2.0.6/docs/client-side-validation.html
http://www.chuug.org/talks/20030325/
http://struts.apache.org/2.0.6/docs/home.html

Bibliography

Struts. 2007b. “MailReader Demonstration Application.”. Available at:
http:/ /www.planetstruts.org/struts2-mailreader/.

Struts. 2007c. “Struts 2.0.6 Distributions.”. Available at:
http:/ /struts.apache.org/download.cgi#struts206.

Tigris. 2007. “Subclipse Eclipse Plugin.”. Available at: http://subclipse.tigris.org/.

UCBerkeley. 2006. “Connecting Apache 2.0.## to JBoss-Tomcat via mod_jk2.”. Available
at: http:/ /sis36.berkeley.edu/projects/streek /howto/apache-mod_jk2-win.html.

47

http://www.planetstruts.org/struts2-mailreader/
http://struts.apache.org/download.cgi#struts206
http://subclipse.tigris.org/
http://sis36.berkeley.edu/projects/streek/howto/apache-mod_jk2-win.html

	Introduction
	Project Prerequisites
	Eclipse
	Jboss
	Securing JBoss
	Apache and JBoss on the Same Server

	Environment Variables
	Maven 2
	Struts 2.0

	Demonstration Project
	The Project Structure
	Java classes
	File Descriptors and Resource Bundles
	The Front-End Files

	The Welcome Action
	The ValidationDemo Action
	The AnnotationValidationDemo Action
	Summary

	Load-Testing
	Setting Up the Test Environment
	The Tested Web Application
	The Load-Tester
	Building a Test Plan
	The Load-Tests

	Conclusion
	Resources
	Project Files
	Java Files
	JSP Files
	Validation Files

	The JMeter Test Plan
	Honours Project Class Documentation
	Honours Project Class Hierarchy
	Honours Project Class List
	com.psbase.hp.action.AnnotationValidationDemo Class Reference
	Detailed Description

	com.psbase.hp.Constants Class Reference
	Detailed Description
	Member Data Documentation

	com.psbase.hp.model.ModelObject Interface Reference
	Detailed Description

	com.psbase.hp.exception.ResultNotSetException Class Reference
	Detailed Description

	com.psbase.hp.action.SupportBase Class Reference
	Detailed Description

	com.psbase.hp.model.TestObject Class Reference
	Detailed Description

	com.psbase.hp.action.ValidationDemo Class Reference
	Detailed Description

	com.psbase.hp.action.Welcome Class Reference
	Detailed Description

	Index of Honours Project Classes
	Glossary
	Bibliography

