
Evaluation of Future
JEE Technologies

Nicolas Lanquetin
0604918@abertay.ac.uk

University of Abertay Dundee
School of Computing & Creative Technologies

May 2007

University of Abertay Dundee

Permission to copy

Author: Nicolas Lanquetin
Title: Evaluation of Future JEE Technologies

Degree: BSc (Hons) Web Design & Development
Year: 4

i) I certify that the above mentioned project is my original work.

ii) I agree that this dissertation may be reproduced, stored or transmitted, in any form
and by any means without the written consent of the undersigned.

Signature: ..

Date: ..

ii

Abstract

The internet is an ideal medium for enterprises to strengthen their brand
and communicate their services. Many enterprises also require an intranet
web application for internal processes or simply to increase communica-
tion inside the company. For large-scale enterprise web applications, a
strong environment such as JEE is required. However, in order to de-
velop such a web application, a good solution is to use a framework. The
latter offers a bundle of common functionality and will, therefore, act as
the foundation for a new web application. Many frameworks exist, but
a recent one in particular stands out: Apache Struts 2.0. Together with a
project lifecycle management tool, Maven 2, this technology make profes-
sional and modern web development possible. This research will test a
variety of features that Maven 2 and Struts 2.0 offer and evaluate whether
they meet specific criteria required for successful web development. The
results will clarify if it is worth using these tools in production environ-
ment and for which target group they will be of interest.

iii

Contents

1. Introduction 1

2. The Technologies 3

3. Evaluation of the Technologies 5
3.1. Maven 2 . 5

3.1.1. The Default Folder Hierarchy . 6

3.1.2. The Project Object Model . 7

3.1.3. Goals in Maven 2 . 8

3.1.4. The WAR File . 9

3.1.5. Summary of Maven’s Evaluation . 10

3.2. Struts 2.0 . 11

3.2.1. The Framework Architecture . 11

3.2.2. Data Binding . 16

3.2.3. Validation . 17

3.2.4. Double Submits . 20

3.2.5. Internationalisation (i18n) . 21

3.2.6. Struts 2.0 Tag Library . 22

3.2.7. Testing Framework . 23

3.2.8. Support & Resources . 24

3.2.9. Tool Support . 27

3.2.10. Performance . 28

3.2.11. Flexibility & Extensibility . 33

3.2.12. Revolutionising Features . 34

3.2.13. Summary of Struts’ Evaluation . 35

4. Conclusion 36

A. The JMeter Test Plan 38

iv

Contents

Glossary 42

Bibliography 44

Index 48

v

List of Figures

2.1. Deployment of a web application using Maven 2 4
2.2. The different layers of used technologies . 4

3.1. Folder Structure of the ‘hp’ project . 6
3.2. Folder Structure of the exploded hp.war file 9
3.3. Diagram of the Model-View-Controller pattern 11
3.4. Interceptor Architecture . 13
3.5. UML class diagram of the Person JavaBean . 16
3.6. Screenshot of the rendered Login form . 22
3.7. Messages posted in the mailing lists from January to April 2007 26
3.8. Proportion of Struts 1.x and Struts 2.0.x threads in the Struts mailing list . . 26
3.9. Number of messages posted monthly to the mailing lists 26
3.10. Single user load-test: Aggregate Graph and Graph Data 30
3.11. Multi-user load-test: Aggregate Graph and Graph Results 32
3.12. Multi-user test destructively: Graph Results 33

A.1. Screenshot of the Welcome screen . 38
A.2. Screenshot of Login screen . 38
A.3. Screenshot of the main menu . 38
A.4. Screenshot of the registration screen, showing the subscriptions 39
A.5. Screenshot of the screen to add a new subscription 39
A.6. Screenshot of registration screen with a new subscription 40
A.7. Screenshot of the screen to delete a subscription 40
A.8. Screenshot of a submitted form where validation failed. 41

vi

List of Tables

3.1. Single user load-test: Summary report . 29
3.2. Multi-user load-test: Summary report . 31

vii

Listings

3.1. pom.xml of the hp project . 7
3.2. Execution of Maven’s ‘package’ goal . 8
3.3. An Action example: Login.java . 12
3.4. Extract of the struts.xml . 14
3.5. Accessing the personList Collection from JSP 15
3.6. Accessing JavaBeans from a JSP . 16
3.7. Registration-validation.xml belonging to the Registration Action 18
3.8. The Registration Action with annotations . 19
3.9. Accessing message resources in JSP . 21
3.10. Login form demonstrating Struts 2.0 tags . 22
3.11. LoginTest.Java . 24
3.12. Continuations demonstrated by the GuessAction 34

viii

Organisation

This dissertation is separated into four chapters, which introduce the research, present the
technologies and their evaluation, and conclude the dissertation by summarising the major
results.

Chapter 1, Introduction (p. 1), goes through the background of this research project and
places the subject into its context.

Chapter 2, The Technologies (p. 3), gives an overview of the different technologies required
to run a web application and explains how they work together.

Chapter 3, Evaluation of the Technologies (p. 5), evaluates the two most important tech-
nologies: Maven 2 and Struts 2.0.

Chapter 4, Conclusion (p. 36), summarises the major results found in this research, con-
cludes if the technologies are of interest for web application development and proposes
future solutions to better Struts 2.0.

ix

Chapter 1.

Introduction

Since the internet has become accessible to everyone, having an internet presence is crucial
for corporations, as they can represent their brand and services, and therefore do business.
It is however required to have a web application to communicate with the internet users.
Many ready to use applications are already available, often for free. The latter are for
instance out-of-the-box content management systems or e-commerce applications which
just need to be adapted to the look and feel of the company’s brand. However, for large
enterprises, it is necessary to build a web application tailored to their specific needs. Be-
cause there are no resources to start an entire web application from scratch, developers use
frameworks. The latter offer basic functionality required in almost every web application.
They ensure: code reuse, prevention of duplication, incremental development, easier and
faster maintenance, and the separation of concerns, enabling better and more focused team
work.

In practice, JEE applications have proven to be one of the best solutions for large-scale
enterprise applications which need to be extended frequently and require constant main-
tenance. There is a large choice of available frameworks for the Java environment. The
most famous one are Spring, Java Server Faces, Webwork, Seam, Tapestry and the Struts
Action Framework 2.0. Previous research (Lanquetin, 2007) has shown, that the Struts Ac-
tion Framework 2.0 is of greatest interest for a research project. Not only it is very new, but
it also incorporates most of the modern ideas on how to implement web applications.

When using the term ‘Struts’, it is not question of the framework, but rather the commu-
nity. In fact, Struts has two frameworks: Struts Action Framework 2.0 and Shale. For
convenience, the framework will henceforth be referred to as ‘Struts 2.0’, which is shorter
than Struts Action Framework 2.0.

Struts 2.0 is a result of the merging of Struts and Webwork 2.2, as both communities found
out, that they had many common views on how a new framework should be implemented.
The great advantage of the merge is that Struts has a large community and a very popular

1

Chapter 1. Introduction

brand name known to every JEE developer. Webwork, in turn, has a smaller community,
but a better framework than Struts. Therefore, the Struts 2.0 framework is based on the
Webwork 2.2 framework and does not have much in common with the old Struts 1.x ver-
sion. However, Struts 2.0 profits from the large Struts community. This is why Struts 2.0
might have a very bright future, with a powerful framework, a large community and a
strong name.

With first stable beta versions appearing in the end of 2006, Struts 2.0 is very new. Some
open-source web applications were already released and made publicly available for demon-
stration purposes (Struts, 2007b,c). Moreover, a growing number of documentation started
to show up in the beginning of the year, making it easier for developers to understand the
framework and start their own web application.

Goal of this research is to find always recurring problems encountered in web applications
development, find out how they are solved in Struts 2.0, and evaluate the solutions. By the
end of the evaluation it should be clear, if it is worth starting a new project on the Struts 2.0
framework, or if the latter might just be another hype.

2

Chapter 2.

The Technologies

Struts 2.0 alone is only the framework required to develop a web application on. However,
the web application will also need to be tested, built, deployed and hosted on an application
server. Therefore, there are several technologies which must be taken into account. This
chapter covers the key technologies required for a project and how they work together.

The actual web application development is based on the Struts 2.0 framework. Aim of the
framework is to handle as much as possible from the common web application work, so
that the developer can fully concentrate on implementing the business logic. In practice,
developing an application on top of the framework means to inherit or implement certain
classes of the framework, create results pages for the front-end and adapt the framework
file descriptors1 accordingly.

Once an application is programmed, it needs to be compiled and deployed. In JEE projects,
this usually happens with the popular build tool Apache Ant. In ‘modern’ projects, it is
however advised to use Maven 2, which has many advantages over Ant. Maven 2 compiles,
packages and deploys the application to the Servlet container of an application server.
During the compilation process all Java files are compiled into classes, the binary format.
The packaging, in turn, consists in creating a web archive (WAR) or an enterprise archive
(EAR), which is a single file containing all the resources of a web application. Finally, the
deployment consists in moving the archive file to a Servlet container, so that the application
can be accessed through the world wide web. Figure 2.1 visualises the Maven 2 processes
described above.

The Servlet container, where the application is deployed to, is used to process the requests
for the web application. In most cases the popular Apache Tomcat is used as Servlet con-
tainer. However, more functionality than sole request processing is sometimes needed, in
which case an application server is indispensable. Beside providing a Servlet container, an

1File descriptors hold configuration information for the framework or the container to which the application
will be deployed.

3

Chapter 2. The Technologies

Web Application WAR/

EAR

Packaging

Compilation

and

Generation

<XML>

Img,

css, js,

etc...

Classes

Deployment

Figure 2.1: Deployment of a web application using Maven 2

application server offers even more functionality, such as handling persistence, caching or
clustering. In our project we use JBoss, since it is the most used Java application server and
comes with Tomcat as Servlet container.

To visualise how all these technologies goes together, Figure 2.2 illustrates the different
layers. Each layer depends on the layer below it. To summarise, the web application is
built on top of the Struts 2.0 framework and deployed into the Servlet container Tomcat,
which in turn is part of the JBoss application server. Finally, JBoss runs in the Java virtual
machine of a server’s operating system.

Operating System

Java Environment

Web Application

Application Server

JEE Application Server (Jboss)

Servlet Container (Tomcat)

Web Application Framework (Struts 2.0)

Bulletin BoardCMS Other Applications

Figure 2.2: The different layers of used technologies

4

Chapter 3.

Evaluation of the Technologies

The previous Chapter covered the main technologies required to develop JEE web applica-
tions. This chapter will present common issues encountered when developing web appli-
cations. In a first step, it is researched how the technologies cope with each of the issues.
Then, an evaluation of the findings highlights the advantages or probable disadvantages of
the technology, comparing the results to older versions or alternative technologies where
possible. Two of these technologies will be evaluated in detail: Maven 2 and Struts 2.0 .

3.1. Maven 2

To manage a project’s life cycle in large-scale enterprise applications, relying on the IDE’s
capabilities alone is not enough. Special tools are required, which should at least allow
testing, building and deploying of an application.

In most projects, developers tend to use Ant to build and deploy their application. Ant
was an excellent solution for the past few years, but time and experience showed, that it
is lacking of standardisation and reuse of code. Maven took notice of Ant’s disadvantages
and offers a better, standardised way as how to manage all important steps of a project
life cycle. Koke (2007), a developer involved in major open-source projects, has defined six
steps to improve and automate development for software projects. One of the steps is the
move from Ant to Maven 2.

As mentioned in Chapter 2, Maven 2 is amongst others used to build and deploy web
applications. The latter are usually packed into a so-called WAR or EAR file, which is
then copied to a Servlet container. An EAR file is typically used for very large applications
containing several WAR files. However, in most project only a single WAR file is required.

5

Chapter 3. Evaluation of the Technologies

3.1.1. The Default Folder Hierarchy

To package a WAR file correctly, Maven 2 needs to know where to find the different re-
sources. To avoid spending a lot of time telling Maven 2 where to find the files, a default
folder hierarchy exists. It requires the developer to place the different resource files at the
right locations. If the folder hierarchy needs to be changed, it is also possible to configure
Maven 2 accordingly. However, Massol et al. (2006, p. 37) strongly advise to stick with
default settings, and only tweak in last resort.

hp

src

main

java

resources

webapp

WEB-INF

struts.xml

HelloWorld.properties

HelloWorld.java

HelloWorld-validation.properties

web.xml

HelloWorld.jsp

test

pom.xml

Figure 3.1: Folder Structure of the ‘hp’ project

Figure 3.1 shows a folder structure for a very basic web application containing only one
HelloWorld Action. The interesting folder is hp/src/main as it contains the actual resources
needed for the web application:

• java contains all the Java files;

• resources contains any resources files, such as localisation properties and input val-
idation files;

• webapp includes the files which will be directly available from the browser, e.g. JSP,
HTML or images.

6

Chapter 3. Evaluation of the Technologies

The XML files pom.xml, struts.xml and web.xml are file descriptors used to configure the
Maven 2 project, the Struts 2.0 framework and the Servlet container.

3.1.2. The Project Object Model

The heart of Maven 2 is the Project Object Model, or POM. The entire configuration for a
Maven 2 project is held in the configuration file pom.xml, which must be placed in the root
directory of the project, as shown in Figure 3.1. An extract of the pom.xml used in the
honours project looks as follow:

Listing 3.1: pom.xml of the hp project

1 <?xml version="1.0" encoding="UTF -8"?>
2 <!-- $Id: pom.xml 6 2007 -04 -19 17 :27:36Z ps $ -->
3 <project xmlns="http:// maven.apache.org/POM /4.0.0" xmlns:xsi="http://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0 http://
maven.apache.org/maven -v4_0_0.xsd">

4 <modelVersion >4.0.0 </modelVersion >
5 <!-- parent projects here -->
6 <groupId >com.psbase.jboss </groupId >
7 <artifactId >hp</artifactId >
8 <packaging >war</packaging >
9 <name>Honours Project </name>

10 <url>http: // jboss.psbase.com/hp/</url>
11 <dependencies >
12 <dependency >
13 <groupId >javax.servlet </groupId >
14 <artifactId >servlet -api</artifactId >
15 <version >2.4</version >
16 <scope>provided </scope >
17 </dependency >
18 <!-- more dependencies here -->
19 </dependencies >
20 </project >

Noteworthy are the packaging tag (line 8) and the dependencies tag (line 11–19). Possible
values for packaging are jar, war and ear. By specifying war as packaging type, the project
is automatically transformed into a web application project. The dependency tags in turn,
list all the libraries needed for the web application. When a new dependency is added to
the project, Maven 2 automatically downloads the dependency from a remote repository
into a local repository. Maven 2 also comes as Eclipse plug-in, which makes the adding of
dependencies very easy, as the user works through the GUI and do not have to change the
pom.xml directly (see Section 3.2.9, Tool Support).

7

Chapter 3. Evaluation of the Technologies

3.1.3. Goals in Maven 2

Maven 2 offers many default processes, such as compiling, packaging or deploying. These
processes are called goals. The most important goal for our project is ‘package’, as it com-
piles the application, runs JUnit1 tests (if they are available) and packages the application
into the WAR file.

Listing 3.2 shows the output of the ‘package’ goal.

Listing 3.2: Execution of Maven’s ‘package’ goal
1 E:\ projects\java\hp\applications\hp>mvn package
2 [INFO] Scanning for projects ...
3 [INFO] --
4 [INFO] Building Honours Project
5 [INFO] task -segment: [package]
6 [INFO] --
7 [INFO] [antrun:run {execution: copy -sources }]
8 [INFO] Executing tasks
9 [copy] Copying 20 files to E:\ projects\java\hp\applications\hp\target\hp\WEB -INF\

src\java
10 [copy] Copying 12 files to E:\ projects\java\hp\applications\hp\target\hp\WEB -INF\

src\java
11 [INFO] Executed tasks
12 [INFO] [resources:resources]
13 [INFO] Using default encoding to copy filtered resources.
14 [INFO] [compiler:compile]
15 [INFO] Compiling 20 source files to E:\ projects\java\hp\applications\hp\target\classes
16 [INFO] [resources:testResources]
17 [INFO] Using default encoding to copy filtered resources.
18 [INFO] [compiler:testCompile]
19 [INFO] Nothing to compile - all classes are up to date
20 [INFO] [surefire:test]
21 [INFO] No tests to run.
22 [INFO] [war:war]
23 [INFO] Exploding webapp ...
24 [INFO] Assembling webapp hp in E:\ projects\java\hp\applications\hp\target\hp
25 [INFO] Copy webapp webResources to E:\ projects\java\hp\applications\hp\target\hp
26 [INFO] Generating war E:\ projects\java\hp\applications\hp\target\hp.war
27 [INFO] Building war: E:\ projects\java\hp\applications\hp\target\hp.war
28 [INFO] --
29 [INFO] BUILD SUCCESSFUL
30 [INFO] --
31 [INFO] Total time: 8 seconds
32 [INFO] Finished at: Fri Apr 20 07:33:47 BST 2007
33 [INFO] Final Memory: 6M/12M
34 [INFO] --

The output is interesting at this point, because it demonstrate the different steps Maven 2
goes through. Each step is introduced with square brackets, e.g. [compiler:compile]

1JUnit is a testing framework written in Java and used to unit test Java application.

8

Chapter 3. Evaluation of the Technologies

(line 14). All these steps are implemented by default in Maven 2, contrary to Ant, where
each had to be written from scratch by the developer.

After the successful execution of the ‘package’ goal, the created WAR file contains the entire
web application and is ready to be used in a Servlet container such as JBoss’ Tomcat.

3.1.4. The WAR File

The exploded2 WAR file has a similar structure than the one on the local file system (c.f.
Section 3.1.1, The Default Folder Hierarchy). Figure 3.2 shows the folder tree and the most
important files of the WAR.

hp.war

classes

lib

src

META-INF

WEB-INF

web.xml

java

HelloWorld.java

HelloWorld.properties

struts.xml

HelloWorld.class

HelloWorld.properties

struts.xml

HelloWorld.jsp

Figure 3.2: Folder Structure of the exploded hp.war file

Two new folders, META-INF and lib, appeared in the WAR file. The META-INF folder
contains information related to Maven 2, and is needed for other projects which would like
to use the project as a dependency. As for the lib folder, it contains all required libraries
defined in the dependencies section of the pom.xml file (c.f. Section 3.1.2, The Project Object
Model).

2A WAR file is nothing other than a packed file. Therefore, in this context, the term ‘exploded’ means
unpacked.

9

Chapter 3. Evaluation of the Technologies

Note that the libraries where held in the local repository, and are only duplicated to be
included in a packaged file, such as the WAR file. Also, apart specifying WAR as value for
the packaging tag, the packaging process did not need any additional configuration, as
Maven 2 knows where to find the resources to package the WAR since they are placed in a
default folder hierarchy. Ant, on the other hand, requires laborious configuration, because
it requires a lot of information on where to find the files and where to copy the files.

3.1.5. Summary of Maven’s Evaluation

The previous sections gave an insight as to how fast and easy a web application can be
built and deployed using Maven 2.

Maven 2 is built upon the principle of ‘convention over configuration’: Because Maven 2
has pre-built processes based on a standardised folder structure, it is not required to write
long configuration files for every single process, which was the case for projects built with
Ant. Moreover, because of that standardised folder structure, it is easier and faster for
developers to get acquainted with new projects using the same folder structure. Not only
does Maven 2 lessen the time required to build a project, but it also offers a coherent
repository, where all dependencies are held. The system is based on a dependencies model,
which already proved to be very useful in popular packaging systems known from Linux
distributions such as Debian (McCuaig, 2003) or Gentoo (Vermeulen et al., 2007).

However, Maven’s strength is also its weakness: Its pre-built goals are not written any-
where, which can make it hard for newcomers to understand what Maven 2 actually re-
quires for its goals to run. Because goals had to be explicitly written in Ant, it was possible
to read what they are actually doing. Maven 2, on the other hand, assumes that the de-
veloper knows what the goals are doing and that the required resources are placed in the
right locations in the folder hierarchy. Therefore, Maven 2 could need some more time to
get used to.

Nevertheless, there are no doubts, that Maven 2 will have a bright future, as more and more
developers will discover the advantages analysed in this project. Struts 2.0 has already
noticed Maven’s potential, as they use it for the development of the Struts 2.0 framework
itself.

10

Chapter 3. Evaluation of the Technologies

3.2. Struts 2.0

Section 3.1 highlighted the advantages of using Maven 2 over other build tools like Ant.
We could see that it is used to effectively build and deploy web applications. The web
application, in turn, needs to be developed first. This is done using the Struts 2.0 framework
which offers a solid ground to build a web application on. The following sections will
describe what makes the framework so special.

3.2.1. The Framework Architecture

Struts 2.0 is a Model 2 implementation, meaning that Servlets and Java Server Pages (here-
after JSP) are used together. The Servlets realise the business logic, whereas the JSPs take
care of writing HTML code. Struts 2.0 follows the classic Model-View-Controller (henceforth
MVC) design pattern which was first introduced with the SmallTalk MVC framework. The
pattern is based on dividing the code into three distinct parts consisting of the retaining of
the state (Model), the rendering of the Model (View), and the selecting of the View (Con-
troller). Figure 3.3 shows a diagram summarising each of the different parts. The main
advantage of using a MVC pattern, is the separation of concerns, which drastically im-
prove team work, as back-end and front-end can be developed individually. It also betters
maintenance and configuration of the application.

Method Invocations

Events

Change

Notification

State

Query

View Selection

User Gestures

State

Change

Model

· Encapsulates application state

· Responds to static queries

· Exposes application functionality

· Notifies views of changes

View

· Renders the models

· Requests updates from models

· Sends user gestures to controller

· Allows controller to select view

Controller

· Defines application behavior

· Maps user actions to model

updates

· Selects view for response

· One for each functionality

Figure 3.3: Diagram of the Model-View-Controller pattern. Source: Sun (2007)

11

Chapter 3. Evaluation of the Technologies

At the heart of the Struts 2.0 framework, there are three key pieces: The Actions, the Results
and the Interceptors. The following Sections will cover each of these elements.

Actions

Every web page or resource of the framework is implemented through a so-called Action.
When a request is received by the application, the framework selects an Action to handle
the request, and more specifically, a method of the Action class. After the execution of an
Action method, the Action can return a string token, like ‘input’ or ‘success’, to indicate
which view should be presented to the user. Listing 3.3 shows an example of a Login

Action, which should clarify how the latter works.

Listing 3.3: An Action example: Login.java

1 public class Login extends com.opensymphony.xwork2.ActionSupport.ActionSupport {
2

3 public String execute () throws Exception {
4 if (isInvalid(username)) return INPUT;
5 if (isInvalid(password)) return INPUT;
6 return SUCCESS;
7 }
8

9 private boolean isInvalid(String value) {
10 return (value == null || value.length () == 0);
11 }
12

13 private String username;
14 private String password;
15

16 public String getUsername () {
17 return username;
18 }
19 public void setUsername(String username) {
20 this.username = username;
21 }
22 public String getPassword () {
23 return password;
24 }
25 public void setPassword(String password) {
26 this.password = password;
27 }
28 }

By default the method execute() will be invoked, if not specified otherwise. The member
fields username and password will have been automatically set, if they are transmitted in
the HTTP request (see Section 3.2.2, Data Binding). This is for instance the case, when a

12

Chapter 3. Evaluation of the Technologies

form has been submitted. Depending on the returned string token from the execute()

method (INPUT or SUCCESS), a Result will be displayed to the client.

Results

The Result, which is the View of the MVC pattern, is generated once the Action has been
executed. It can be a simple XHTML file, generated through JSP, or any other imagin-
able type, such as a PDFs or images. The method used for the Result generation can be
realised through any possible technology available, including JSP, Velocity or XSL. Light-
body, Husted and Luppens (2006) list a total of twelve predefined Result types available in
Struts 2.0.

Interceptors

Beside the effective MVC architecture, Struts 2.0 also provides an ingenious Interceptors
concept, making the framework very flexible and extensible. Figure 3.4 visualises how this
concept works.

Servlet Filter Dispatcher

Client

Interceptor 1

Interceptor 2

Interceptor 3

Action

Result

send request

get result

Figure 3.4: Interceptor Architecture

When a client requests an Action, the request is first processed by so-called Interceptors,
as shown in Figure 3.4. Very basic Interceptors handle validation, check for duplicated
submits or apply internationalisation (i18n). Other Interceptors, such as the ExecuteAnd-

WaitInterceptor, can provide automatic ‘Please wait...’ pages for long-running requests,

13

Chapter 3. Evaluation of the Technologies

for instance when booking a journey. It is also possible to configure Interceptors which run
only after the Action has been executed.

For every available Action, it can be configured, which Interceptors and Results should be
used. Listing 3.4 shows an extract of a very basic struts.xml. The latter is a file descriptor,
which holds all configuration related to the Struts 2.0 framework.

Listing 3.4: Extract of the struts.xml

1 <package name="default" extends="struts -default">
2 <interceptors >
3 <interceptor name="timer" class=".."/>
4 <interceptor name="logger" class=".."/>
5 </interceptors >
6

7 <action name="login" class="Login">
8 <interceptor -ref name="timer"/>
9 <interceptor -ref name="logger"/>

10 <result name="input">login.jsp</result >
11 <result name="success" type="redirect -action">/secure/home</result >
12 </action >
13 </package >

In the example above, an Action named login has been configured, which will be handled
by the Login class. Furthermore, the logging Action requires two Interceptors: timer and
logger. Note that the order is also important. Finally, the Result is generated through one
of the defined results, depending on the returned string token from the Action (either
input or success).

At this date, many Interceptors have already been implemented: Brown et al. (2007) pub-
lished a list of all available Interceptors in version 2.0.6 of Struts, totalling 27 Interceptors.
Also, most Actions will not need to explicitly specify which Interceptors they require, as
there is a default Interceptor stack. In order to improve the performance, it is however
advised to explicitly reference only the used Interceptors. Additionally, if an Intercep-
tor is missing, it is possible to create an own Interceptor, by implementing the provided
Interceptor interface or by extending AbstractInterceptor (Husted, 2006a). For instance,
an own Interceptor could be written to ensure that a user is authenticated, before the Action
is processed.

The great advantage of Interceptors, is that they provide a unique class to process common
functionality. This greatly supports the principle of code-reuse, and make maintenance of
the application easier. Furthermore the Interceptors handle tasks, which would otherwise
have been implemented in the Action classes. It is, however, a good practice to have an
as short as possible Action, containing only the business logic required for a specific task.

14

Chapter 3. Evaluation of the Technologies

Everything else, related to the web application or the framework, should be handled by the
Interceptors.

The Value Stack

Beside the clever Interceptor concept, Struts 2.0 comes with another ingenious feature: the
value stack. To grasp the meaning of the latter, it must first be understood how data is
passed from the Action to the Result. In most frameworks, this happens by placing Objects
in a Servlet scope, which in turn can be accessed from the JSPs. Four scope exists in Struts:
page, session, request and application scope. When a JSP tries to access an Object, it will
look in each scope in the cited order, until it finds the Object.

Struts 2.0, however, uses an additional scope, the value stack, to store Objects. When an
Action is executed all its accessible JavaBean fields3 are automatically pushed onto the
value stack and made available to the JSP.

The value stack comes in handy, when it is necessary to access Bean data from Objects such
as Collections. This usually happens in an iteration in the JSP. An example will clarify
how this works: Assuming that a Collection of Person Objects was pushed from an Action
onto the value stack, it is then possible to iterate over the Collection using the Struts 2.0 tag
library as demonstrated in Listing 3.5 (c.f. Section 3.2.6, Struts 2.0 Tag Library).

Listing 3.5: Accessing the personList Collection from JSP

1 <s:iterator value="personList.person">
2 <p>
3 Name: <s:property value="name"/>

4 Gender: <s:property value="gender"/>

5 Age: <s:property value="age"/>
6 </p>
7 </s:iterator >

The great advantage of the value stack is that it is not necessary to use qualified ref-
erences, such as personList[0].name, to access the Person Objects inside the personList

Collection. This is because the <s:iterator> tag pushes the currently iterated Person Ob-
ject onto the value stack for the time of an iteration, allowing direct access of the Person’s
getters. If another Person Object was already on the value stack before the iteration took
place, this Object will neither be accessible, nor overwritten. This is because of the ‘last-in,
first-out’ principle of stacks: All Person Object from the iteration will be popped from the
stack as soon as the iteration is over, making the previous Person Object accessible again.

3These are the fields which are accessible through the public getter methods (e.g. getName()).

15

Chapter 3. Evaluation of the Technologies

The value stack is definitely one of the greatest features in Struts 2.0, as it prevents direct
access to Bean data from an Action and makes accessing the data very easy.

3.2.2. Data Binding

Data binding is needed, when a web form is being submitted to the server. Contrary to
Java, HTTP is not aware of data types. Therefore, when a form is being submitted, all
strings need to be converted to the correct type used in the application. Struts 2.0 handles
the type mismatch on its own, since it has a built-in type conversion (Lightbody, Hermanns,
Luppens, Husted and Barroso, 2007).

Best practice is to use domain Objects directly, instead of using simple types. The first are
usually JavaBeans, Objects consisting of member fields and getters and setters accordingly.
An example of a JavaBean and a JSP extract will clarify the easy way of getting data from
and to a JSP. Figure 3.5 shows an UML class diagram of the Person JavaBean.

+getName() : String

+getAge() : int

+getBirthdate() : java.sql.Date

+setName(in name : String)

+setAge(in age : int)

+setBirthdate(in birthdate : java.sql.Date)

Person

-name : String

-age : int

-birthdate : java.sql.Date

Figure 3.5: UML class diagram of the Person JavaBean

In the JSP file, the JavaBean can then be accessed using the Struts form tags, as shown in
Listing 3.6.

Listing 3.6: Accessing JavaBeans from a JSP

1 <s:form name="editForm" action="save">
2 <s:textfield name="person.name"/>
3 <s:textfield name="person.age"/>
4 <s:textfield name="person.birthdate"/>
5 </s:form >

When the form is submitted, the JavaBean Person is automatically populated with the
content of the form values. If the types used in the JavaBean differ from the submitted
strings, as it is the case for the fields age or birthday, Struts 2.0 will convert the submitted

16

Chapter 3. Evaluation of the Technologies

strings into the expected types int and java.sql.Date accordingly. This task is done
by a pre-built Interceptor, which is included in the default Interceptor stack used by all
Actions, if not specified otherwise (c.f. Section 3.2.1, The Framework Architecture). Of
course Struts 2.0 allows the configuration of default error messages for exceptions arising
during the conversion. This can be configured in validation XML files (c.f. Section 3.2.3,
Validation).

Furthermore Struts 2.0 also handles the conversion of values for more advanced types,
including Collections and Maps. The latter are for instance required in drop-down lists
or multiple choice lists. In special cases, the developer will need a conversion, which is
not included in Struts 2.0 by default. For this case Struts 2.0 offers the possibility to create
own converters, simply by extending the StrutsTypeConverter class. Two methods can
be overridden: convertFromString(..) and convertToString(..). These methods do the
conversion from the type used in the application, and the string used in the HTTP request
or response.

Another powerful feature provided by Struts 2.0, is the creation of new Object if these
where not provided by the Action. If for instance a JSP contains a form with a list of
strings which where nowhere defined in the Action, the framework will create the list and
make it available to the Action. Of course this procedure implies some special care with
regard to security.

In short, it is no more necessary to cast strings to types using own implemented utility
classes. Struts 2.0 handles the entire data binding. It holds all the possibles type conver-
sions at a central place, thereby ensuring code-reuse and easier maintenance. Again, the
Action class is freed from unnecessary lines of codes, which consequently makes it easier
to fully concentrate on the business logic.

3.2.3. Validation

Validation is another issue, which needs to be taken care of in every web application.
Struts 2.0 solves this problem with an Interceptor as well (Lightbody, Gielen, Luppens,
Brown, Husted and Barroso, 2007).

A set of common validation rules is already provided by the framework. In total, there
exists twelve validation rules, which can be used out of the box. Amongst others, these
provide validation for required fields, email addresses, regular expressions, date ranges,
and many more.

17

Chapter 3. Evaluation of the Technologies

Struts 2.0 offers the possibility to do validation on Action or field level. This means, that it
is possible to generate error messages, which can be shown for an entire Action or for each
single field of the form.

There are three ways to handle validation in Struts 2.0:

1. All validation rules can be configured in a validation.xml file belonging to an Ac-
tion.

2. Alternatively, the validation can be configured as annotations directly inside the Ac-
tion class.

3. Another possibility is to make the Action implement the Validateable interface and
write the validation in the validate() method provided by the interface. This how-
ever, should only be done for more complex validation rules, which require database
access for instance.

An example will demonstrate how easy validation rules can be set up. The example consists
in calling the Registration Action, where the user has to submit a form containing an
email address and a password. The password must be supplied twice to make sure that
the user did not misspell it.

The first solution is to realise the validation through a validation.xml file. Listing 3.7
shows the XML file which the Interceptor needs in order to validate the submitted form.

Listing 3.7: Registration-validation.xml belonging to the Registration Action

1 <!DOCTYPE validators PUBLIC " -// OpenSymphony Group// XWork Validator 1.0.2// EN"
2 "http://www.opensymphony.com/xwork/xwork -validator -1.0.2. dtd">
3

4 <validators >
5

6 <field name="emailAddress">
7 <field -validator type="requiredstring">
8 <message key="error.emailddress.required"/>
9 </field -validator >

10 <field -validator type="email">
11 <message key="errors.email"/>
12 </field -validator >
13 </field>
14

15 <field name="password">
16 <field -validator type="requiredstring">
17 <message key="error.password.required"/>
18 </field -validator >
19 <field -validator type="stringlength">
20 <param name="trim">true</param>
21 <param name="minLength">4</param>
22 <param name="maxLength">10</param >

18

Chapter 3. Evaluation of the Technologies

23 <message key="errors.range"/>
24 </field -validator >
25 </field>
26

27 <field name="password2">
28 <field -validator type="requiredstring">
29 <message key="error.password2.required"/>
30 </field -validator >
31 </field>
32

33 <validator type="expression">
34 <param name="expression">password eq password2 </param>
35 <message key="error.password.match"/>
36 </validator >
37

38 </validators >

Every field validation is realised through the field tag, where as many as needed vali-
dation rules can be defined. Since every field of the form is mandatory, a validation of
type ‘requiredstring’ is added to each field tag. Furthermore, it can be ensured that
the entered email is a valid one by adding the ‘email’ type (line 10–12), or that the pass-
word should be between 4 and 10 characters long with the ‘stringlength’ type (line 19–
23). Finally, an error message on Action level can be added if the two passwords do not
match(line 33–36). The error messages in the form are made available through properties
files (see Section 3.2.5, Internationalisation (i18n)).

The second solution to implement validation is to use annotations directly in the Action
class (Hermanns, Husted and Brown, 2006). Annotations is a Java specific feature avail-
able since Java 5. It consists in adding meta information directly in the programme code.
Listing 3.7 shows how this is done.

Listing 3.8: The Registration Action with annotations

1 @Validation ()
2 public class Registration extends ActionSupport {
3

4 private String emailAddress;
5

6 @RequiredFieldValidator(type=ValidatorType.FIELD , message="The email is required")
7 @EmailValidator(type=ValidatorType.FIELD , message="The email is not valid")
8 public void setEmailAddress(String email) {
9 this.email = emailAddress;

10 }
11

12 public String getEmailAddress () {
13 return emailAddress;
14 }
15

16 // the other methods where left out

19

Chapter 3. Evaluation of the Technologies

17 }

As shown in the Action class, it is possible to configure validation by adding annota-
tions preceding the setters of the fields, which needs to be validated. This was already
done in earlier frameworks using XDoclet. The latter, however, consists in writing meta
information into the Javadoc of the methods and classes. XDoclet might have become a
pseudo-standard, but fact remains, that Java annotations are part of Java and do not need
any additional tools. Using these annotations has huge advantages: It prevents the main-
tenance of two separate files and ensures that all the Action fields are covered during a
validation.

Finally, to avoid unnecessary duplication of validation, it is possible to define global vali-
dation rules, which can be used by any Actions. This ensures code-reuse and easier main-
tenance.

One of the most powerful features in Struts 2.0 new validation system, is without doubt
the client-side validation (Lightbody and Husted, 2006). Amongst others, it uses AJAX,
and more specifically Getahead’s Direct Web Remoting (DWR) which allows Javascript to
interact with Java on a server (Getahead, 2007). Without any further programming effort,
the entire validation can take place on the client-side. The effect is the same, with the
difference that no request has to be sent back to the server, thereby lessening server round-
trips and giving the user a even faster feedback.

Summing up, the validation is very well implemented in Struts 2.0. Developers have the
choice between different approaches, either by decoupling validation from Actions, or man-
aging both inside Actions using annotations. Furthermore, Struts’ validation allows for
customisation, which makes the framework very flexible. Finally, the clever client-side
validation makes the application web 2.0 ready.

3.2.4. Double Submits

Double submits are a common problem when designing web applications. A double submit
occurs, when the user submits a form more than once. This can happen, when the user
double-clicks a button, or clicks a button several times because the page is not loading
quick enough.

Struts 2.0 can manage double submits, by enabling the ‘token’ or ‘token-session’ Interceptor
for an Action where a double submit can occur (Husted, 2006b,c). These Interceptors save
a struts token as hidden field using the <s:token/> tag, so that a double submit can be
recognised by the framework. If the submitted token does not match the struts token,

20

Chapter 3. Evaluation of the Technologies

the request and all following requests are disregarded. In the past, with Struts 1.x, double
submits must have been coded into the application logic, which made the programme code
longer and more difficult to maintain.

3.2.5. Internationalisation (i18n)

For international corporation it is important to support several languages inside the same
web application. In Struts 2.0, internationalisation is realised through resource bundles,
property files which must be placed in the class path of the application. They are used by
the Struts 2.0 tags and during the validation.

The resource bundles can be stored in seven different locations. One possibility is to include
the resources in a file <ActionName>.properties, belonging to an Action with the same
name. An alternative is to put the messages into a more global properties file, which can
be accessed from several Actions. When a message resource is required, it will be searched
through these locations in a predefined order. It is therefore possible for individual classes
to override global messages in their own properties files.

Using Struts 2.0 tags, it is possible to access the messages resources in three different ways
described in Listing 3.9.

Listing 3.9: Accessing message resources in JSP

1 <!-- using getText () -->
2 <s:property value="getText(’some.key ’)" />
3

4 <!-- using the text tag -->
5 <s:text name="some.key" />
6

7 <!-- using the i18n tag -->
8 <s:i18n name="some.package.bundle" >
9 <s:text name="some.key" />

10 </s:i18n >

Internationalisation is realised by the naming pattern of the resource bundles. For Swedish
a file FooAction_se.properties has to be created, containing the country code ‘se’ in its
name. When the language is switched to Swedish, all files containing the ‘se’ country code
will be used instead of the default property files.

Summing up, Struts 2.0 proposes to separate JSP code from actual text, by saving the text
messages in properties files. This ensures that language dependent text can be maintained
separately. Additionally, the text messages can be saved in different location. The advan-
tage is that messages can be defined for several Actions at once, with the possibility to

21

Chapter 3. Evaluation of the Technologies

override these messages for specific Actions. Furthermore Struts 2.0 offers three ways to
access messages, leaving the developer a lot freedom about which method to choose. How-
ever, it is not clear if the messages can be stored in other places, such as a database or XML
files. This could become a problem for companies with already available messages.

3.2.6. Struts 2.0 Tag Library

When designing an HTML interface, a lot of time is spent in writing HTML code. In
Struts 2.0, most of that work is done by Struts 2.0 tags (or UI tags), which provide form
controls to dynamically create XHTML and Javascript code. To demonstrate the ease of
use, Listing 3.10 shows a very basic Login form using form controls.

Listing 3.10: Login form demonstrating Struts 2.0 tags

1 <s:form action="Login" validate="true">
2 <s:textfield key="username"/>
3 <s:password key="password" />
4 <s:submit/>
5 </s:form >

This short snippet produces a XHTML form, realised as a two-column table with the field
labels in the left column, and the text fields in the right column. Figure 3.6 shows a
screenshot of the rendered HTML.

User Name:

Password:

Submit

Figure 3.6: Screenshot of the rendered Login form

The look-and-feel of the form can be influenced by specifying a theme. Themes are a very
useful way to adapt the look of the outcome at a central place. Moreover, themes can
extend each others, so that the entire theme does not need to be rewritten. In the example
above, the XHTML theme was chosen, which produces a simple two-column layout. Other
themes exist, such as the AJAX theme, which allows the user to get dynamic content from
the server.

Furthermore, Struts 2.0 fixes a misconception of the HTML standard, which is to specify an
Action in the form tag. The framework allows to bind Actions to buttons inside the form.
To make this possible, Struts 2.0 generates Javascript code which calls the right Action,
depending on the pressed button.

22

Chapter 3. Evaluation of the Technologies

Another problem with HTML are checkboxes. The latter are usually used to represent
boolean values. The problem with checkboxes are that unchecked checkboxes are not sub-
mitted with the request. In Struts 1.x, developers had to use a long-winded reset method
as a work-around for this issue. Struts 2.0, in turn, handles checkbox state automatically,
meaning that the framework can detect if a checkbox was checked or not.

It is also possible to use parameters when calling Struts 2.0 tags. This is done with the
param tag. The following JSP snippet for instance calls the url tag with the host name as
parameter:

1 <s:url action="Subscription_edit"><s:param name="host" value="google.com"/></s:url >

The following string is then rendered:

1 Subscription_edit.do?host=google.com

In summary, the Struts 2.0 tags are a very powerful feature of the Struts 2.0 framework.
They allow to easily construct a thorough and always same-looking layout. Furthermore
developers can focus exclusively on the form elements, without having to worry about
HTML issues. The only problem which could come up, is that Struts 2.0 tags are not
flexible enough. However, Struts 2.0 countered this inflexibility by providing the concept
of themes, which allows for complete customisation of the design.

3.2.7. Testing Framework

Regular testing is the key to quality releases. Extreme programming even suggests a test-
first approach, where tests are written before the programme implementation. In JEE
projects, unit tests proved to be the most successful approach to allow a maximum test
coverage. The latter consists in testing each single unit of the application independently.

For the unit testing, the traditional tool JUnit is the most used. It is available as stand-alone
application or integrated in most IDE’s such as Eclipse. Furthermore, it can be run as GUI
or in the command line.

Usually, when testing the front-end of web applications, it is necessary to go through a
HTTP request to check for expected responses from the application. Struts 2.0 proposes
an easier way, which allows to test the application directly without the requirement of a
request. An example will demonstrate how easy a test can be implemented. Listing 3.3 on
page 12 showed the Login Action which will be tested.

23

Chapter 3. Evaluation of the Technologies

Listing 3.11: LoginTest.Java
1 public class LoginTest extends org.apache.struts2.StrutsTestCase {
2

3 public void testLoginSubmit () throws Exception {
4 Login login = new Login();
5 login.setUsername("username");
6 login.setPassword("password");
7 String result = login.execute ();
8 assertTrue("Expected a success result!",ActionSupport.SUCCESS.equals(result));
9 }

10

11 }

As shown in the above class (Listing 3.11), the first step is to extend StrutsTestCase.
Each public method of the LoginTest class will automatically be run when the test case is
launched. To test the Login Action, it is necessary to create a new Login Object (line 4) and
populate it with the data that would have normally be sent over a HTTP request (line 5–6).
Then the method that should be tested is called (line 7), and it is checked if the returned
string correspond to what was expected (line 8).

Testing is not just limited to JUnit inside an IDE. It is also a mandatory step when packaging
the web application using Maven 2. Listing 3.2 on page 8 showed the package goal of
Maven 2. As mentioned before, many goals are run when packaging the web application.
One of them is the [surefire:test] goal (line 20–21 of Listing 3.2), which runs all the
unit tests available in the application4. Since all the goals depend on each others, the web
application will not be packaged if one of the goals fails. In other words, the developer
must ensure a failure free product if they want to create a WAR file.

3.2.8. Support & Resources

Support and documentation is a key argument when choosing a technology. It must be
guaranteed that the technology has a large community, which provides documentation, is
aware of developers needs, and constantly improves the software. Community activity can
be measured through the number of active users in mailing lists, message boards, chats
and websites dedicated to the technology.

Websites

For Struts 2.0, most information can be found in the Struts 2.0.6 documentation (Struts,
2007a). The latter is realised as Wiki, maintained by very important developers, including

4For the unit test to run, they must be placed in the test folder (as shown in Figure 3.1 on page 6)

24

Chapter 3. Evaluation of the Technologies

P. Lightbody, a leading committer of the WebWork application framework, and T. Husted,
a release manager and senior member of the Struts development team.

As for Maven 2, it has a detailed Documentation (Maven, 2007b) with useful ‘getting
started’ tutorials. It is however recommended to read the very complete book ‘Better Builds
with Maven’ by Massol et al. (2006).

Finally, m2eclipse does not require much documentation, as it is quite easy to use. Code-
haus (2007) provides two very useful flash animations, which explains how to install the
plug-in in Eclipse, and how to use the plug-in.

Overall, the online resources for the technologies are sufficient to be able to realise a project.
It must however be added that the documentation was very poor in the year 2006, and that
there has been a lot of improvement, especially for Struts 2.0, whose Wiki is growing every
month.

Mailing Lists

Mailing Lists are one of the most used ways to communicate within a community. For our
project, the following mailing lists are of interest:

• Struts’ user mailing list: user@struts.apache.org

• Webwork’s user mailing list: users@webwork.dev.java.net

• Maven’s user mailing list: users@maven.apache.org

• m2eclipse’s user mailing list: user@m2eclipse.codehaus.org

Of course the key technologies, Struts 2.0 and Maven 2, are the most important ones.
However, the Webwork’s mailing list is worthy of note as well, since Struts 2.0 resulted of
the merging of Struts and Webwork. The latter was used as basis to built Struts 2.0 on.
Therefore, the Webwork mailing list covers most topics, which are of interest in Struts 2.0
as well.

With a total of over 5000 messages for Struts and 7000 messages for Maven in the year 2007,
these technologies are well covered by the community (see Figure 3.7).

Since the Struts mailing list is still used for the older Struts versions (1.x), it is crucial to
analyse the messages with regard to their content. Analyses of messages posted in April
2007 show that almost two-thirds of the threads concern issues encountered in Struts 2.0.x
(see Figure 3.8). These results implies that Struts 2.0 is not only an active topic, but also
that the Struts 1.x users moved on and tried the new version.

25

mailto:user@struts.apache.org
mailto:users@webwork.dev.java.net
mailto:users@maven.apache.org
mailto:user@m2eclipse.codehaus.org

Chapter 3. Evaluation of the Technologies

0

1000

2000

3000

4000

5000

6000

7000

8000

Struts webwork Maven

Figure 3.7: Messages posted in the mailing lists from January to April 2007. Source: Apache
(2007b,c); Webwork (2007)

36%

64%

Struts 1.x

Struts 2.0.x

Figure 3.8: Proportion of Struts 1.x and Struts 2.0.x threads in the Struts mailing list in April 2007.
Source: Apache (2007c)

0

1000

2000

3000

4000

5000

6000

Maven

Struts

webwork

Figure 3.9: Number of messages posted monthly to the mailing lists. Source: Apache (2007b,c);
Webwork (2007)

26

Chapter 3. Evaluation of the Technologies

As shown in Figure 3.9 the mailing lists are all actively used through the last few years.
Noteworthy is the slight decrease of Webwork’s mailing list activity, which could however
be interpreted as a consequence of the merge, since the decrease started with the appearing
of Struts’ first beta versions in the end of 2006. However, no considerable activity decrease
is noticeable for the Struts and Maven mailing list; their activity is constantly increasing
since February 2007, reflecting a growing interest for these technologies.

Internal Relay Chat (IRC)

The Internal Relay Chat (henceforth IRC) permits users to chat together in so-called chan-
nels, or have individual discussions in private chats. Most technologies have an IRC chan-
nel dedicated to that technology, enabling users to seek help, or exchange ideas and opin-
ions.

Struts discussions take place in the channel #struts on irc.freenode.net. With over 30,000
users, freenode has the largest IRC community for open-source related technologies (Freen-
ode, 2007). The #struts channel, however, is quite small with an average of 10 to 20 users,
and does not provide much help, as users only idle in the channel.

Maven 2 has a much more active IRC community, with an average of 50 users on their
channel #maven on irc.codehaus.org. In this channel, chances are good to get help in real-
time.

To summarise, each technology, especially Struts 2.0 and Maven 2, provides a solid base of
documentation through their website. As for problems or questions, they will most likely
be handled through the very active mailing lists.

3.2.9. Tool Support

Tools can save time on more complicate or redundant tasks. Therefore it was researched,
which tools could support the project or the framework.

m2eclipse Plug-in for Eclipse

As mentioned in Section 3.1, Maven 2 is a valuable tool, which greatly improves the project
development. Usually, it is used in the command prompt, but as an Eclipse plug-in,
Maven 2 is enhanced by an easy to use GUI. However m2eclipse was difficult to set up,
because of dependency problems encountered when used as plug-in within Eclipse. The

27

irc://irc.freenode.net
irc://irc.codehaus.org

Chapter 3. Evaluation of the Technologies

problem comes from a transitive dependency not finding its artifact (Bolcina, 2007a). In
other words, because a library (tools.jar) could not be found in Struts’ dependency tree,
the project could not compile. The proposed solutions (Bolcina, 2007b; Maven, 2007a) were
without success. Because dependencies are stored on the local repository and made avail-
able to Eclipse through the Maven 2 plug-in, Eclipse was missing important libraries to run
and compile the code correctly. A temporary work-around was to copy the dependencies
to a library directory, which Eclipse had access to, so that it was still possible to work in
Eclipse. Consequently, Maven 2 had to be used through the command line prompt.

To summarise, m2eclipse is certainly a useful tool, making the development faster and
easier, since it acts as user-friendly graphical interface to the command line version of
Maven 2. However, it can costs a lot of time to resolve encountered problems.

XDoclet

XDoclet is on of the most famous tool in JEE development. The principle is to add so-called
XDoclet tags in JavaDocs, which are, strictly speaking, only comments in the programming
code. However, the comments are contained inside special brackets (/** and */, which
allows the XDoclet preprocessor to read the XDoclet tags before the actual compiling. XDo-
clet can therefore easily extract information about Actions or beans, and generate the ap-
propriate descriptors, or even classes. However, no XDoclet tags were defined for Struts 2.0
yet. Nevertheless, since Struts 2.0 is built on the Webwork framework, it is possible to use
the already defined webwork tags.

A part from XDoclet, there exist no tools yet which would support Struts 2.0 projects.
However, the framework is very young, so it might be possible, that new tools will appear
in a near future.

3.2.10. Performance

Performance is a key factor when choosing the technologies to implement and host a
web application. However, performance is expensive, as it requires high-end CPU’s or
web-farms. An application consuming less CPU and memory, can be hosted on cheaper
hardware or support more simultaneous users. Allowing a high number of users is very
important for large enterprise applications, which JEE claims to be made for.

For this reason some load-tests have been realised on a Struts 2.0 web application in the
practical part of the project. The load-testing was split into two steps: The first, is a sin-
gle user load-test, which analyses which Struts 2.0 features takes the longest to process,

28

Chapter 3. Evaluation of the Technologies

whereas the second step truly load-test the application with multiple simultaneous users.
For both tests the same test scenario was used.

Test Scenario

For the test scenario, special care was spent in incorporating as much Struts 2.0 features
as possible. The following list explains in detail which steps a test user had to go through
during one iteration:

1. A user visits the homepage of the application (Figure A.1, p. 38),

2. logs in with username and password (Figure A.2, p. 38),

3. comes to a main menu (Figure A.3, p. 38),

4. clicks her way through to a registration page (Figure A.4, p. 39),

5. adds an email account to her subscriptions (Figure A.5, p. 39),

6. deletes the just added subscription (Figure A.7, p. 40),

7. changes her profile information, but receives a validation error (Figure A.8, p. 41),

8. goes to the main menu (Figure A.3, p. 38),

9. and finally logs out (Figure A.1, p. 38).

Single User Load-Test Results

A single user load-test was done, in order to see the strength and limits of each Struts 2.0
feature. Table 3.1 shows a summary report of the load-test results for a single user doing
the above scenario 50 times in a loop.

Table 3.1: Single user load-test: Summary report

29

Chapter 3. Evaluation of the Technologies

The results show that a request takes 31ms in average and that approximately 30 requests
can be processed in a second. As expected, it takes longer to generate a large amount
of dynamic content, as it is the case when using forms: All pages including forms takes
45–71ms to process, whereas other pages only takes 5–7ms. Also, the Login Action is
generated twice as fast as the Subscription or Registration Action. This clearly shows that,
the more form elements are contained in an Action, the slower the page is processed. In
any case, these values are extremely low considered the fact, that a user won’t notice any
delay under 200ms.

The aggregate graph data shown in Figure 3.10, is interesting in consideration of business
requirements, as it provides supplement results, such as the 90% Line. The latter expresses
the processing time that can be expected for 90% of the requests. In the load-test, the
90% Line has a value of 62ms. This value is of interest for service level agreements (SLA)
contracts. For instance, if 11% exeeds the 63ms for a given month, the customer gets a
discount.

Figure 3.10: Single user load-test: Aggregate Graph and Graph Data

Another data provided by the aggregate graph is the standard deviation, defined as the
square root of the total of the deviation of each sample5 from the average. Figure 3.10 shows
a deviation of 26 for a total of 750 samples. This is a relatively small number, meaning that

5In JMeter, the term ‘sample’ is used for a request

30

Chapter 3. Evaluation of the Technologies

the web application is stable. A high deviation, would imply that the response time will
vary for each user, meaning that some users get a response very quickly, whereas other
users need to wait for a longer time.

The aggregate graph further shows the samples, expressed in the black colour. Each black
dot represent a sample. It can easily be observed, that the time to process each request is
constant, as the dots form a horizontal line. This result is not surprising, because only a
single user is connected to the application for now.

Multi-User Load-Test Results

In a second step, the web application was load-tested with several simultaneous users. Two
test cases were considered during the evaluation:

1. Load-test: To find the maximum number of users, all by maintaining acceptable re-
sponse times.

2. Test destructively: To find out the hard limit of the application.

For the first case, the results showed that the maximum of simultaneous users is 45 to 50,
considered the constraint, that the application should have an acceptable response time.
This result was obtained by letting a certain amount of users n do the scenario twice, with
2 seconds between each request and a ramp-up period of 10 seconds. The ramp-up period
is the time in which each of the n users start the scenario. In other words, each user starts
the scenario every 10

n seconds. The tests were run several times, varying the total number
of users, with regard to not have an average response time over 100ms. The test results
below were obtained with 47 users.

Table 3.2 shows the results obtained for each request. The pages including a large form,
still have an acceptable response time of 178–280ms. Smaller pages have a response time
below 41ms.

Table 3.2: Multi-user load-test: Summary report

31

Chapter 3. Evaluation of the Technologies

The aggregate graph shown in Figure 3.11, clearly illustrate what happened during the
ramp-up period. The graphs for deviation and average response time increase very slowly
until a certain point, when they increase sharply. At that point, the application had to
save and delete user data from a database implemented as XML file. It is very possible
that the XML file is the bottle neck of the application, since every request needs exclusive
access on the file, thereby slowing down requests which must wait for the file lock to be
released before they can access it. Furthermore the only failing requests are those handled
by the Subsciption_save.do Action, an Action which appends a large amount of data to the
XML file. However, the fails were only noticeable to the user, but had no influence on the
consistency of the XML file.

Figure 3.11: Multi-user load-test: Aggregate Graph and Graph Results

A second step was to test how much users the application could handle (test destructively).
Figure 3.12 shows the graph results of the test with a total of 200 simultaneous users, which
was the limit of users the test client system could handle. Surprisingly, the application
handles all requests, even if the response time is very long, with values of 17 seconds.

Summary of load-tests

The test results are only of interest if it is clear, what can be spent on hardware or which
infrastructure is already available. Furthermore it must be evaluated what the anticipated

32

Chapter 3. Evaluation of the Technologies

Figure 3.12: Multi-user test destructively: Graph Results

average and peak number of users will be. These questions are normally answered in the
application requirements and in a SLA.

In the project’s load-tests a mid-range PC was used with a 2.01GHz processor and 2GB of
memory with 512 MB allocated to JBoss. Usually, dedicated servers can offer much more
performance, thereby allowing more simultaneous users. Overall, the results showed that
Struts 2.0 can handle an acceptable amount of simultaneous requests, which will be suf-
ficient for most companies anticipating an average of 50 simultaneous users on relatively
cheap server. A destructive test showed that more users are possible with more perfor-
mance and a better persistence layer.

3.2.11. Flexibility & Extensibility

Being able to extend the framework and adapting it to the needs of an application is very
important. The framework should handle most of the general work which an average
application require, but then again allow for customisation. Many features of Struts 2.0
make it a very flexible and extensible framework.

Struts 2.0 took care of making as much interfaces as possible available to the developers,
in order to extend the framework with additional functionality. Some of the interfaces or
abstract classes include amongst others the Interceptor or AbstractInterceptor, to im-
plement an own Interceptor; Preparable, whose prepare() method is called before the Ac-
tion is executed; StrutsTypeConverter, to add further type conversion; or Validateable,
to add custom validation. Interfaces are a good practice in software development, because
they hide the implementation from the calling class. Contrary to interfaces, abstract classes
can have an implementation, but require that the developer implements some of the ab-
stract methods. The amount of available interfaces and abstract classes shows that it is

33

Chapter 3. Evaluation of the Technologies

possible to implement many aspects of the framework, which in turn makes the latter very
extensible and flexible.

Furthermore the interceptor concept allows for great extensibility, as described in Sec-
tion 3.2.1, The Framework Architecture. Struts 2.0 also proposes different types of results
(PDF, XSL, XHTML, etc.), and the possibility to add own results.

3.2.12. Revolutionising Features

Struts 2.0 is built on many years of JEE best practices and experience. Beside being the
result of the best and improved features available, Struts 2.0 innovates with new concepts
in the JEE world.

QuickStart

QuickStart is one of these new concepts. One of the reason for the Ruby on Rail (RoR) hype,
is the ability to quickly develop an application. Inspired by the advantages of RoR and
Appfure, QuickStart permits to test and develop a JEE application in real-time, without the
need of long built and deployment processes. The application can be developed directly in
a Jetty server, which automatically compiles sources files on the fly. According to Lightbody
(2007), the installation of QuickStart is a very easy 3 step procedure.

Continuations

Continuations is a feature which is only available in very few frameworks, such as Cocoon.
It is a native feature in some languages, but not in Java. Therefore, Struts 2.0 emulates
the continuation behaviour. To explain the principle of continuations, Listing 3.12 shows a
simple GuessAction, which implements the classical number guessing game.

Listing 3.12: Continuations demonstrated by the GuessAction

1 int answer = 45;
2

3 while (answer != guess && tries > 0) {
4 pause(SUCCESS);
5 if (guess > answer) {
6 addFieldError("guess was too high!");
7 } else if (guess > answer) {
8 addFieldError("guess was too low!");
9 }

10 tries --;
11 }

34

Chapter 3. Evaluation of the Technologies

In the guessing game, the user has to guess a number. The application helps the user, by
telling her, if she guessed to high or too low. The special part in this programme is the
pause() function (see line 4). It renders the result page configured for the string SUCCESS

and waits for the user to input a new number. When the new number is submitted, the
programme is resumed (at line 5). According to Lightbody (2007), this feature is not pro-
duction ready yet, but should demonstrate what will be possible in future Struts releases.

3.2.13. Summary of Struts’ Evaluation

This Chapter covered the most important criteria, which makes a good framework. First
of all, Struts 2.0 uses an MVC architecture, which proved to work very well since it was
introduced. The framework is further split up in three key components: Action Results and
Interceptors. Each of these components are very powerful assets to the framework, as each
cope with different concerns, thereby allowing better distribution of tasks within a team,
and easier maintenance. Furthermore, Struts 2.0 comes with automatic type conversion; a
powerful validation system; great support for internationalisation; a Struts 2.0 tag library,
which uses the ingenious value stack; great support for testing environment; a large com-
munity of developers and users; a performance, which did well during load-tests; a default
framework configuration, which should satisfy most application’s needs, but which is also
very flexible and extensible; and finally, some new revolutionising JEE features, such as
QuickStart or Continuations. The frameworks limits, however, are the lack of tools, which
may soon be available, once the framework will be more popular.

35

Chapter 4.

Conclusion

The aim of this research project was to evaluate Maven 2 and Struts 2.0, since these are two
very recent technologies used to create web applications. Special care has been taken to
analyse specific aspects of each technology in order to cover every important criteria for a
effective project management tool or framework accordingly.

Maven 2 is without any doubt the best tool available so far to handle the lifecycle of JEE
projects. It removes the tedious work that a developer must perform with other build tools
such as Ant. This is only made possible through a consequent standard project layout and
a standardised dependency-system. All tasks required by a JEE project are implemented
by default and can, therefore, be run out of the box without any further configuration.
Consequently, it is no longer necessary to create and maintain large configuration files and
projects can be developed faster than ever.

As for Struts 2.0, it proved to successfully meet all requirements of a modern web appli-
cation framework. It is built on best practices which are founded on years of experience.
Previous users will enjoy the fact that Struts 2.0 is still Action driven and built around
the MVC pattern, but they will further benefit from new features such as the Intercep-
tor concept, better automation of data binding, a much simpler validation system, and an
improved struts tag library. Beside offering improved features, Struts 2.0 also innovates
by introducing annotations, which increase the speed of development. Finally, it can be
noticed that Struts is actively working on improvements for the new framework and has
plans for the future, for instance with the new concept of continuations.

Summing up, Struts 2.0 alleviates the web development work allowing a faster production
delivery and better maintenance. The framework provides a flexible and extensible appli-
cation architecture with labour-saving Struts 2.0 tags and many ways to configure common
workflows within an application. For all these reasons, Struts 2.0 should most certainly be
considered as a framework for new development projects.

36

Chapter 4. Conclusion

Nevertheless, the results of this research project also showed that Struts 2.0 is not a product
for everybody. First of all, the load-tests indicated that great performance is required to
handle over 50 simultaneous users. If the customer expects more users, expensive hardware
is required. Furthermore the application needs to have Javascript enabled, as Struts 2.0 uses
it frequently, especially for forms. If one of the customers requirement is to allow users
with Javascript being disabled, Struts 2.0 is probably not the right framework to choose.
For any other customer requiring a large-scale enterprise application, Struts 2.0 is without
doubts the right choice.

Outlook

One of Struts’ weak points, is the lack of supported tools to develop an application based
on the framework. Of course, annotations and XDoclet can be used to generate the file
descriptors, but it could be a great advantage to have an IDE integration for the most
important tasks. Struts 2.0 took advantage of several concepts, allowing to maintain many
concerns in many places. A GUI could increase usability and better maintenance by helping
to manage all these different resources.

However, Struts 2.0 is only at its beginning and seems to already have found a large com-
munity of supporting developers. Only the future will tell if Struts can maintain its strong
position as a community with one of the most used frameworks in JEE development.

37

Appendix A.

The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Welcome.do

MailReader Demonstration Application Options

Register with the MailReader Demonstration Application
Log on to the MailReader Demonstration Application

Language Options

English
Japanese
Russian

Powered by Struts

A Walking Tour of the MailReader Demonstration Application

Figure A.1: Screenshot of the Welcome screen

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Login_input.do

Username:

Password:

Save

Reset

Cancel

MailReader Demonstration Application

testuser1

Figure A.2: Screenshot of Login screen

http://192.168.0.1:8080/struts2-mailreader-2.0.6/MainMenu.do

Main Menu Options for testuser1

Edit your user registration profile
Log off MailReader Demonstration Application

Figure A.3: Screenshot of the main menu

38

Appendix A. The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Registration_input.do
Username: testuser1

Password:

(Repeat) Password:

Full Name:

From Address:

Reply To Address:

Save

Reset

Cancel

Current Subscriptions

Host Name User Name Server
Type

Auto Action

Add

MailReader Demonstration Application

testuser1

testusers@testers.com

testusers@testers.com

Figure A.4: Screenshot of the registration screen, showing the subscriptions

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Subscription_input.do
Username: testuser1

Mail Server:

Mail Username:

Mail Password:

Server Type: POP3 Protocol 6POP3 Protocol

gfedc Auto Connect

Save

Reset

Cancel

MailReader Demonstration Application

mail.yahoo.com

testuser1

hons

Figure A.5: Screenshot of the screen to add a new subscription

39

Appendix A. The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Registration_input.do
Username: testuser1

Password:

(Repeat) Password:

Full Name:

From Address:

Reply To Address:

Save

Reset

Cancel

Current Subscriptions

Host Name User Name Server
Type

Auto Action

mail.yahoo.com testuser1 pop3 false Delete Edit

Add

MailReader Demonstration Application

testuser1

testusers@testers.com

testusers@testers.com

Figure A.6: Screenshot of registration screen with a new subscription

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Subscription_delete.do?host=mail.yahoo.com
Username: testuser1

Mail Server: mail.yahoo.com

Mail Username: testuser1

Mail Password: hons

Server Type: pop3

Auto Connect: false

Confirm

Cancel

MailReader Demonstration ApplicationFigure A.7: Screenshot of the screen to delete a subscription

40

Appendix A. The JMeter Test Plan

http://192.168.0.1:8080/struts2-mailreader-2.0.6/Registration_save.do
Username: testuser1

Password:

(Repeat) Password:

Full Name is required

Full Name:

From Address is required

From Address:

Reply To Address:

Save

Reset

Cancel

Current Subscriptions

Host Name User Name Server
Type

Auto Action

Add

MailReader Demonstration ApplicationFigure A.8: Screenshot of a submitted form where validation failed.

41

Glossary

Notation Description
AJAX Asynchronous JavaScript and XML: AJAX is used to

only refresh specific parts of a website instead of reloading
the entire page.

ASF Apache Software Foundation: The Apache Software
Foundation is a non-profit corporation, operating many dif-
ferent web related projects and a wide community of mem-
bers.

EAR Enterprise ARchive: An EAR file packages one or more
WARs.

HTTP Hypter Text Transfer Protocol: HTTP is amongst others
the protocol used to browse the World Wide Web.

IRC Internal Relay Chat: HTTP is amongst others the protocol
used to browse the World Wide Web.

J2EE Java 2 Platform, Enterprise Edition: J2EE is a version of
Java for developing and deploying enterprise applications.

JAR Java ARchive: JAR is a file format used to package Java
applications

JDK Java Development Kit: The Java Development Kit is a
collection of developer tools for Java developers provided by
Sun Microsystems.

JEE Java Platform, Enterprise Edition: Formerly known as
J2EE up to version 1.4, the term JEE is now used for web
application running on version 5 of the Java Platform.

42

Appendix A. The JMeter Test Plan

Notation Description
JRE Java Runtime Environment: The Java Runtime Environ-

ment is a collection of libraries and other components pro-
vided by Sun Microsystems that allows a computer system
to run applets and applications written in the Java program-
ming language.

JSF Java Server Faces: JSF is a Java-based web application
framework.

JSP Java Server Pages: JavaServer Pages is a server side script-
ing language developed by Sun Microsystems that is used by
Java developers to dynamically generate web pages.

MVC Model View Controller: A paradigm, stating that the data
(model) should be seperated from the user interface (view)
and the processing (controller).

POM Project Object Model: The POM is an XML file, which
holds the entire configuration for Maven projects.

URL Uniform Resource Locator: A URL is the unique address
for a file that is accessible on the Internet.

W3C The World Wide Web Consortium: The W3C defines the
specifications and guidelines for internet standards.

WAF Web Application Framework: A WAF provides various
functionalities required to build a web application.

WAR Web ARchive: A WAR file is a JAR used to deploy a col-
lection of resources needed for a Java web application.

XHTML eXtensible Hypter Text Markup Language: XHTML
is a text-based markup language written in XML for the
creation of web pages. It has been developed by the W3C as
the successor of HTML.

XML eXtensible Markup Language: XML is a general-purpose
markup language for creating special-purpose markup lan-
guages, and is used to describe different kinds of data.

43

Bibliography

Apache. 2007a. “Apache JMeter.”. Available at: http://jakarta.apache.org/jmeter/.

Apache. 2007b. “Mailing list archives: users@maven.apache.org.”. Available at:
http://mail-archives.apache.org/mod_mbox/maven-users/.

Apache. 2007c. “Mailing list archives: user@struts.apache.org.”. Available at:
http://mail-archives.apache.org/mod_mbox/struts-user/.

Bolcina, Borut. 2007a. “[m2eclipse-user] Won’t compile because of transitive dependency
not finding its artifact.”. Available at:
http://www.mail-archive.com/user@m2eclipse.codehaus.org/msg00376.html.

Bolcina, Borut. 2007b. “Re: [m2eclipse-user] Won’t compile because of transitive
dependency not finding its artifact.”. Available at:
http://www.mail-archive.com/user@m2eclipse.codehaus.org/msg00378.html.

Brown, Don, Ted Husted, Dave Newton, Musachy Barroso and Philip Luppens. 2007.
“Interceptors.”. Available at: http://struts.apache.org/2.0.6/docs/interceptors.html.

Burns, Ed, Jason Carreira, Howard M. Lewis Ship David Geary, Jonathan Lock and Kevin
Osborn. 2005. Web Framework Smackdown. In JavaOne ’05: Session 7642.

Codehaus. 2007. “The Maven Integration for Eclipse.”. Available at:
http://m2eclipse.codehaus.org.

Eclipse. 2007. “Eclipse.org home.”. Available at: http://www.eclipse.org.

Fanelli, Tim. 2005. “Getting Started with Struts Shale.”. Available at:
http://www.timfanelli.com/item/134.

Freenode. 2007. “About the Network.”. Available at: http://freenode.net/.

Getahead. 2007. “DWR - Easy AJAX for JAVA.”. Available at: http://getahead.org/dwr/.

Hermanns, Rainer, Ted Husted and Don Brown. 2006. “Validation Annotation.”. Available
at: http://struts.apache.org/2.0.6/docs/validation-annotation.html.

44

http://jakarta.apache.org/jmeter/
http://mail-archives.apache.org/mod_mbox/maven-users/
http://mail-archives.apache.org/mod_mbox/struts-user/
http://www.mail-archive.com/user@m2eclipse.codehaus.org/msg00376.html
http://www.mail-archive.com/user@m2eclipse.codehaus.org/msg00378.html
http://struts.apache.org/2.0.6/docs/interceptors.html
http://m2eclipse.codehaus.org
http://www.eclipse.org
http://www.timfanelli.com/item/134
http://freenode.net/
http://getahead.org/dwr/
http://struts.apache.org/2.0.6/docs/validation-annotation.html

Bibliography

Hibernate. 2004. “Hibernate Aware Action.”. Available at:
http://www.hibernate.org/51.html.

Husted, Ted. 2006a. “Building Your Own Interceptor.”. Available at:
http://struts.apache.org/2.x/docs/building-your-own-interceptor.html.

Husted, Ted. 2006b. “Token Interceptor.”. Available at:
http://struts.apache.org/2.0.6/docs/token-interceptor.html.

Husted, Ted. 2006c. “Token Session Interceptor.”. Available at:
http://struts.apache.org/2.0.6/docs/token-session-interceptor.html.

Husted, Ted. 2007. “Apache Struts 2 from Square One (training course).”. Available at:
http://code.google.com/p/sq1-struts2/.

JBoss. 2007a. “Apache Reference: mod_proxy.”. Available at:
http://labs.jboss.com/portal/jbossas/download/.

JBoss. 2007b. “Securing JBoss.” Jboss Wiki . Available at:
http://wiki.jboss.org/wiki/Wiki.jsp?page=SecureJBoss.

Koke, Justin. 2007. “From manual to automatic.”. Available at:
http://blogs.atlassian.com/developer/2007/03/from_manual_to_automatic.html.

Lanquetin, Nicolas. 2007. “Research Proposal for Future JEE Technologies.”. Available at:
http://psbase.com/studies/uad/wdd/ca1068a_research_proposal/.

Laurie, Ben and Chuck Murcko. 1996. “Apache Reference: mod_proxy.”. Available at:
http://www.apacheref.com/ref/mod_proxy.html.

Lightbody, Patrick. 2007. “WebWork (Struts 2) In Action.”. Available at:
http://www.infoq.com/presentations/struts-2-webwork-pat-lightbody.

Lightbody, Patrick, Rainer Hermanns, Philip Luppens, Ted Husted and Musachy Barroso.
2007. “Type Conversion.”. Available at:
http://struts.apache.org/2.0.6/docs/type-conversion.html.

Lightbody, Patrick, Rene Gielen, Philip Luppens, Don Brown, Ted Husted and Musachy
Barroso. 2007. “Validation.”. Available at:
http://struts.apache.org/2.0.6/docs/validation.html.

Lightbody, Patrick and Ted Husted. 2006. “Client Side Validation.”. Available at:
http://struts.apache.org/2.0.6/docs/client-side-validation.html.

Lightbody, Patrick, Ted Husted and Philip Luppens. 2006. “Result Types.”. Available at:
http://struts.apache.org/2.0.6/docs/result-types.html.

45

http://www.hibernate.org/51.html
http://struts.apache.org/2.x/docs/building-your-own-interceptor.html
http://struts.apache.org/2.0.6/docs/token-interceptor.html
http://struts.apache.org/2.0.6/docs/token-session-interceptor.html
http://code.google.com/p/sq1-struts2/
http://labs.jboss.com/portal/jbossas/download/
http://wiki.jboss.org/wiki/Wiki.jsp?page=SecureJBoss
http://blogs.atlassian.com/developer/2007/03/from_manual_to_automatic.html
http://psbase.com/studies/uad/wdd/ca1068a_research_proposal/
http://www.apacheref.com/ref/mod_proxy.html
http://www.infoq.com/presentations/struts-2-webwork-pat-lightbody
http://struts.apache.org/2.0.6/docs/type-conversion.html
http://struts.apache.org/2.0.6/docs/validation.html
http://struts.apache.org/2.0.6/docs/client-side-validation.html
http://struts.apache.org/2.0.6/docs/result-types.html

Bibliography

Mann, Kito D. 2005. From Struts to JavaServer Faces: Evolving Your Web Applications to
Support the New Standard. In JavaOne ’05: Session 7642.

Massol, Vincent, Jason va Zyl, Brett Porter, John Casey and Carlos Sanchez. 2006. Better
Builds with Maven. Mergere Inc.

Maven. 2007a. “How do I include tools.jar in my dependencies?”. Available at:
http://maven.apache.org/general.html#tools-jar-dependency.

Maven. 2007b. “Maven Documentation.”. Available at:
http://maven.apache.org/guides/index.html.

McClanahan, Craig. 2005a. “The Best of Both Worlds: Integrating JSF with Struts in Your
J2EE Applications.” Oracle Technology Network . Available at:
http://www.oracle.com/technology/pub/articles/masterj2ee/j2ee_wk8.html.

McClanahan, Craig. 2005b. Shale: The Next Struts?? In ApacheCon US ’05: Session TU24.

McCuaig, Pann. 2003. “Debian Packaging System.”. Available at:
http://www.chuug.org/talks/20030325/.

McLaughlin, Brett. 2006. “All Hail Shale: Shale isn’t Struts.” IBM developerWorks .
Available at: http://www.theserverside.com/talks/library.tss#mcclanahan2.

Shah, Gautam. 2006. “Apache Shale Takes JavaServer Faces to the Next Level.” devX .
Available at: http://www.devx.com/Java/Article/31419/.

Sipe, Ken. 2005a. Struts Shale... I Mean Struts. In DevCon ’05. Available at:
http://bdn1.borland.com/devcon05/article/1,2006,33222,00.html.

Sipe, Ken. 2005b. Web Application Development using Struts, Shale, and JSF. In DevCon
’05. Available at: http://bdn1.borland.com/devcon05/article/1,2006,33218,00.html.

Struts. 2007a. “Apache Struts 2 Documentation.”. Available at:
http://struts.apache.org/2.0.6/docs/home.html.

Struts. 2007b. “MailReader Demonstration Application.”. Available at:
http://www.planetstruts.org/struts2-mailreader/.

Struts. 2007c. “Struts 2.0.6 Distributions.”. Available at:
http://struts.apache.org/download.cgi#struts206.

Sun. 2007. “Java BluePrints: Model-View-Controller.”. Available at:
http://java.sun.com/blueprints/patterns/MVC-detailed.html.

Tigris. 2007. “Subclipse Eclipse Plugin.”. Available at: http://subclipse.tigris.org/.

46

http://maven.apache.org/general.html#tools-jar-dependency
http://maven.apache.org/guides/index.html
http://www.oracle.com/technology/pub/articles/masterj2ee/j2ee_wk8.html
http://www.chuug.org/talks/20030325/
http://www.theserverside.com/talks/library.tss#mcclanahan2
http://www.devx.com/Java/Article/31419/
http://bdn1.borland.com/devcon05/article/1,2006,33222,00.html
http://bdn1.borland.com/devcon05/article/1,2006,33218,00.html
http://struts.apache.org/2.0.6/docs/home.html
http://www.planetstruts.org/struts2-mailreader/
http://struts.apache.org/download.cgi#struts206
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://subclipse.tigris.org/

Bibliography

UCBerkeley. 2006. “Connecting Apache 2.0.## to JBoss-Tomcat via mod_jk2.”. Available
at: http://sis36.berkeley.edu/projects/streek/howto/apache-mod_jk2-win.html.

Vermeulen, Sven, Grant Goodyear, Roy Marples, Daniel Robbins, Chris Houser and Jerry
Alexandratos. 2007. “Portage Introduction.”. Available at:
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1.

Webwork. 2007. “Mailing list archives: users@webwork.dev.java.net.”. Available at:
https://webwork.dev.java.net/servlets/SummarizeList?listName=users.

47

http://sis36.berkeley.edu/projects/streek/howto/apache-mod_jk2-win.html
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2&chap=1
https://webwork.dev.java.net/servlets/SummarizeList?listName=users

Index

#maven, 27
#struts, 27
Methods

prepare(), 33

Abstract classes
AbstractInterceptor, 14
StrutsTypeConverter, 17

Action, 11–13
Annotations, 19–20
Ant, see Apache Ant
Apache Ant, 5
Apache Tomcat, 3
Application server, 3–4

Classes
ExecuteAndWaitInterceptor, 13

Conversion, see Data Binding

Data Binding, 16–17
Direct Web Remoting, 20
Double Submits, 20–21
DWR, see Direct Web Remoting

EAR, see Enterprise Archive
Enterprise Archive, 5

Files
hp.war, 9
pom.xml, 7
struts.xml, 14

validation.xml, 18–19
freenode, 27

i18n, see Internationalisation
Interceptor, 13–15
Interfaces

Interceptor, 14
Preparable, 33
Validateable, 18

Internal Relay Chat, 27
Internationalisation, 21–22
IRC, see Internal Relay Chat

Java Server Pages, 11
JavaBean, 16–17
JBoss, 4
JSP, see Java Server Pages
JUnit, 23–24

m2eclipse, 27–28
Maven 2

goals, 8–9
Methods

execute(), 12–13
validate(), 18

Model 2, 11
Model-View-Controller, 11
MVC, see Model-View-Controller

POM, see Project Object Model

48

Index

Project Object Model, 7

Results, 13

Servlet, 11
Servlet container, 3–4
Struts token, 20–21

theme, 22
Tomcat, see Apache Tomcat
Type Conversion, see Data Binding

Validation, 17–20
Value Stack, 15–16

WAR, see Web Archive
Web Archive, 5

XDoclet, 20, 28

49

	Introduction
	The Technologies
	Evaluation of the Technologies
	Maven 2
	The Default Folder Hierarchy
	The Project Object Model
	Goals in Maven 2
	The WAR File
	Summary of Maven's Evaluation

	Struts 2.0
	The Framework Architecture
	Data Binding
	Validation
	Double Submits
	Internationalisation (i18n)
	Struts 2.0 Tag Library
	Testing Framework
	Support & Resources
	Tool Support
	Performance
	Flexibility & Extensibility
	Revolutionising Features
	Summary of Struts' Evaluation

	Conclusion
	The JMeter Test Plan
	Glossary
	Bibliography
	Index

